Uniwersytet Mikołaja Kopernika Wydział Fizyki, Astronomii i Informatyki Stosowanej

Paweł Koziatek

Klasyfikacja widmowa olbrzymów w wybranych układach symbiotycznych i próba ekstrakcji widma gorącego składnika.

Praca magisterska opiekun: **dr hab. Maciej Mikołajewski**

Toruń, 2007

Chciałbym złożyć serdeczne podziękowania na ręce mojego Promotora dr hab. Macieja Mikołajewskiego za jego wiedzę i umiejętności, którymi zawsze chętnie się ze mną dzielił, prowadząc mnie przez kolejne etapy tej pracy. Szczególne słowa uznania i wdzięczności należą się mgr Jędrzejowi Osiwale, który udostępniając swoje dane oraz pomagając mi w zrozumieniu idei pracy bardzo przyczynił się do jej powstania. Dziekuję też moim kochanym Rodzicom za to, że niezmiennie wspierali mnie przez wszystkie lata w dążeniu do celu.

UMK zastrzega sobie prawo własności niniejszej pracy magisterskiej w celu udostępniania dla potrzeb działalności naukowo-badawczej lub dydaktycznej.

Spis treści

1	Ws	éb	7										
	1.1	Gwiazdy symbiotyczne	7										
2	Por	miary TiO w widmach standardów typu M											
	2.1	Rejestrowanie widm	11										
	2.2	Metoda pomiaru pasm TiO	12										
	2.3	Wyniki pomiarów pasm TiO w widmach standardów	14										
	2.4	Oszacowanie typu widmowego oraz pomiary struktur TiO dla											
		zmiennych typu mira	19										
	2.5	Typ widmowy w zależności od struktur TiO	26										
	2.6	Średnie typy widmowe i rozkłady energii w ich widmach	30										
~	F												
3	Roz	kłady energii w widmach gwiazd symbiotycznych	35										
	3.1	Kalibracja danych obserwacyjnych	35										
	3.2	Rozkłady energii gwiazd symbiotycznych	38										
		3.2.1 AG Peg	38										
		3.2.2 AX Per	41										
		3.2.3 BX Mon	43										
		3.2.4 CI Cyg	45										
		3.2.5 NQ Gem	47										
		3.2.6 RS Oph	49										
		3.2.7 T CrB	51										
		3.2.8 TX CVn	53										
		3.2.9 YY Her	55										
		3.2.10 Z And	57										
		3.2.11 ZZ CMi	59										
		3.2.12 MWC 560	61										
		3.2.13 V934 Her	62										

6			SI	PI	S '	Τŀ	RE	EŚCI
4	Тур	y widmowe gwiazd symbiotycznych						63
5	Eks	trakcja widma gorącego składnika						67
	5.1	Widma olbrzymów typu M						67
	5.2	Widmo gorącego składnika						72
	5.3	Podsumowanie	•					81
6	Sup	lement 1						83
	6.1	$T \ CrB \ \ldots \ $						83
	6.2	V934 Her						88
	6.3	ZZ CMi	•	•				90
7	Sup	lement 2						95
	7.1	AG Dra						96
	7.2	AG Peg						98
	7.3	ZZ CMi						99
	7.4	o Ceti						100
	7.5	AX Per						101
	7.6	BX Mon			•			102
	7.7	СН Суд						103
	7.8	CI Cyg			•			105
	7.9	EG And			•			106
	7.10	MWC 560						107
	7.11	NQ Gem			•	•		108
	7.12	PU Vul			•	•		109
	7.13	R Aqr			•			110
	7.14	RS Oph						111
	7.15	T CrB \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots			•			112
	7.16	$TX \ CVn \ \ldots \ $			•			113
	7.17	V627 Cas						114
	7.18	V1016 Cyg						115
	7.19	YY Her						116
	7.20	V934 Her						117
	7.21	Z And	•	•				118
Bi	bliog	rafia					•	121

Rozdział 1

Wstęp

1.1 Gwiazdy symbiotyczne

Gwiazdami symbiotycznymi, czyli gwiazdami typu Z Andromedae, nazywamy oddziałujące układy podwójne gwiazd składające się z trzech składników. Jednym z nich jest biały karzeł, drugim jest chłodny, zaawansowany ewolucyjnie olbrzym lub nadolbrzym, będący w niektórych układach zmienną typu mira. Podejrzewa się, że istnieją układy symbiotyczne z gwiazdą neutronową. Trzeci składnik stanowi mgławica otaczająca obie gwiazdy, powstała z materii wyrzucanej z chłodnego składnika i pobudzana do świecenia przez gorący komponent. Ze względu na rozmiary chłodnego składnika, separacja między gwiazdami musi być odpowiednio duża. Gwiazdy symbiotyczne są więc układami o największej separacji oraz o najdłuższych okresach orbitalnych wynoszących od 200 dni do około 20 lat. Występują rzadko, znanych jest zaledwie mniej niż dwieście tego typu układów (Belczyński et al., 2000). Większość z nich znajduje się w naszej Galaktyce, ale piętnaście spośród obecnie badanych zlokalizowanych jest poza naszą galaktyką: jeden w karłowatej galaktyce w Smoku, sześć w Małym Obłoku Magellana, a osiem w Dużym Obłoku Magellana.

Gwiazdy symbiotyczne stały się celem badań we wczesnych latach trzydziestych XX wieku. Ich widma przedstawiają pasma absorpcyjne tlenku tytanu (TiO), charakterystyczne dla chłodnego składnika układu symbiotycznego, a także linie emisyjne jednokrotnie zjonizowanego helu HeII lub podwójnie zjonizowanego tlenu [OIII] oraz czasem nawet kilkukrotnie zjonizowanego żelaza, co wskazuje na obecność gorącej mgławicy. Widma ukazują obecność chłodnej gwiazdy typu M, z temperaturą powierzchniową poniżej 4000K, ale występują też układy z olbrzymem typu K. Chłodne gwiazdy typu M mają najbardziej złożone widma. Są usiane absorpcjami, z których jedne są bardzo silne i głębokie, a inne widać tylko przy największej rozdzielczości. Natężenia pasm absorpcyjnych tlenku tytanu pozwalają sklasyfikować poszczególne podtypy widm. Dla najwcześniejszych – M0 do M2 – odwołujemy się dodatkowo do linii atomowych, zwłaszcza linii wapnia (4226Å) i najsilniejszych linii żelaza. Dla typów póniejszych od M2 natężenie pasm TiO jest podstawowym wskanikiem podtyou widmowego. W typach pónych – M7 i M8 – pojawia się również silne pasma tlenku wanadu (VO). Opierając się na kryteriach dla linii i pasm z podczerwonej części widma wyróżniono podtypy M9 i M10. Olbrzymy typu widmowego K charakteryzują się temperaturą powierzchniową od 3500K do 5000K. Widma takich gwiazd posiadają linie metali niezjonizowanych oraz liczne pasma cząsteczkowe.

Systematyczne obserwacje w podczerwieni doprowadziły do podziału gwiazd symbiotycznych na dwa typy:

- Typ D–pokazujący emisję w podczerwieni, co wskazuje na obecność grubej otoczki pyłowej
- **Typ S**–emitujący podczerwone promieniowanie typowe dla atmosfer czerwonych olbrzymów

Układy typu D na ogół zaweirają zmienną typu mira i ich okres orbitalny jest prawdopodobnie dłuższy niż 10 lat. Układy typu S są stosunkowo ubogie w pył i charakteryzują się okresami raczej krótszymi. W przypadku obiektów zaliczanych do typu D, pył emituje termiczne promieniowanie o średniej temperaturze 1000K.

W swojej pracy chcę dokonać klasyfikacji widmowej chłodnego składnika spośród układów symbiotycznych obserwowanych najczęściej w Centrum Astronomii w Piwnicach pod Toruniem. Zastosowana przeze mnie metoda, oparta na pomiarze strumieni w pasmach TiO pozwala precyzyjnie określić podtyp widmowy gwiazd typu M. W drugim rozdziale prezentuję wyniki badań pasm tlenku tytanu dla gwiazd standardowych powyższego typu, co w kolejnych rozdziałach ma posłużyć do ekstrakcji widma gorącego składnika w wybranych układach symbiotycznych. W rozdziale trzecim zamieszczam rozkłady energii w opracowanych widmach gwiazd razem z widmem pochodzącym z katalogu Munariego i Zwittera (2002). W rozdziale czwartym przedstawiam nowe podtypy widmowe chłodnych składników gwiazd symbiotycznych uzyskane przy pomocy metody opartej na pomiarze pasm tlenku tytanu w widmach olbrzymów i opisanej w rozdziale drugim niniejszej pracy. Rozdział piąty zawiera widma wyekstrahowanych gorących składników wybranych układów symbiotycznych. Na końcu (rozdział 7.) zamieszczam w postaci uzupełnienia do całej pracy spis wszystkich obserwacji gwiazd symbiotycznych wykonanych teleskopem o średnicy 90 cm dla wszystkich obserwowanych zakresów i użytych siatek dyfrakcyjnych.

Rozdział 2

Pomiary TiO w widmach standardów typu M

2.1 Rejestrowanie widm

Widma wykorzystane na potrzeby niniejszej rozprawy zostały uzyskane głównie przez mgr Jędrzeja Osiwałę, jak również przeze mnie. Instrumentem, który posłużył do tego celu był Kanadyjski Spektrograf Kopernikowski (dalej zwany *CCS* od angielskiego *Canadian Copernicus Spectrograph*), umieszczony w ognisku teleskopu *Schmidta-Cassegraina* o średnicy zwierciadła 90 cm, który znajduje się w Centrum Astronomii Uniwersytetu Mikołaja Kopernika w Piwnicach pod Toruniem. CCS jest unikatownym spektrografem szczelinowym ufundowanym przez Polonię z Kanady i USA na pięćsetną rocznicę urodzin Mikołaja Kopernika. Spektrograf został zaprojektowany przez E.H. Richardsona, konstrukcję i mechanikę projektował G.A. Brealey (Richardson and Brealey, 1973). Spektrograf jest kompaktowym urządzeniem opartym na optyce pozaosiowej, pierwotnie zoptymalizowany do pracy z płytami fotograficznymi jako detektorem. W roku 2000 spektrograf przeszedł gruntowną modernizację, której zadaniem było dostosowanie go do współpracy z kamerą CCD (od ang. *Charge Coupled Device*).

Obserwacje zostały wykonane w rozdzielczości R = 1000, dla szczeliny 0.26 mm (co odpowiada ≈ 4 sekundom łuku na niebie) i siatki dyfrakcyjnej 600 rys/mm dla zakresu 3500–5500Å. Kilka widm zostało uzyskanych z siatką 300 rys/mm, ale nie posłużyły one do do wyznaczania kryteriów klasyfikacji. Dla zdecydowanej większości widm obserwowanych gwiazd były rejestrowane widma standardów spektrofotometrycznych, dobieranych tak, by znajdowały się one w niewielkiej odległości kątowej od gwiazdy programowej. Odległość ta z reguły nie przekraczała kilku stopni. Standardy były obserwowane zaraz po lub tuż przed rejestrowaniem widma gwiazdy programowej. Pozwoliło to na uwzględnienie ewentualnej zmiany pogody podczas obserwacji. Obrabiając dane obserwacyjne przy pomocy zestawu pakietów zawartych w środowisku IRAF stosowałem krzywa czułości uzyskaną dla danego sezonu i ustawienia elementów optycznych. Przy wyznaczaniu rozkładów energii korzystałem ze średniej ekstynkcji atmosferycznej dla Piwnic, gdyż ewentualne błędy wynikające z różnicy pomiędzy prawdziwą a średnią ekstynkcją nie mają znaczącego wpływu na uzyskiwane rozkłady energii. Jako standardy spektrofotometryczne były wybierane gwiazdy stałe o wczesnych typach widmowych B, A, F, ze względu na niewielką ilość linii widmowych i dominacją kontinuum. W ich doborze pomogły katalogi wtórnych standardów spektrofotometrycznych opublikowanych pod redakcją Głuszniewy (Glushneva et al., 1992, 1998). Stosowałem głównie katalog z 1998 roku zawierający rozkłady energii 866 gwiazd w zakresie 3225-7615Å, z krokiem 50Å. Błąd wyznaczenia strumieni standardów zawartych w powyższym katalogu wynosi według autorów 3.2%.

2.2 Metoda pomiaru pasm TiO

Metoda, którą tu opisuję została wcześniej już zastosowana przez mgr Jędrzeja Osiwałę i zebrane w tym rozdziale wyniki są wynikami głównie jego pracy.

Widma standardów typu M zostały wstępnie znormalizowane do jasności V=5mag w celu ułatwienia porównywania ze sobą różnych typów widmowych. Takie posunięcie nie wpływa na wyznaczane z tych widm wielkości, ponieważ tymi wielkościami są stosunki mierzonych pól w obrębie tego samego widma. Do analizy wybrano gwiazdy niepoczerwienione, dlatego też w obrabianych widmach poczerwienienie międzygwiazdowe nie było uwzględniane.

Zakresy mierzone w widmach są zdefiniowane w *tabeli 2.1.* dla następujących parametrów:

- A_{λ}^{TiO} pseudoabsorpcja względem "szczytów" kolejnych pasm TiO;
- E_{λ}^{TiO} pseudoemisja; pozostałość po pseudoabsorpcjach TiO, mierzona pomiędzy "dnami" kolejnych pasm TiO (*rys 1.*)
- F_{λ}^{TiO} całkowite strumienie energii emitowane w zakresie wyznaczonym pomiędzy "dnami" lokalnych pasm TiO.

2.2. METODA POMIARU PASM TIO

Graficzne przedstawienie sposobu pomiaru strumienia w pseudoabsorpcji i pseudoemisji zawiera rysunek 2.1. Na rysunku 2.2 przedstawiłem sposób pomiaru całkowitego strumienia energii F_{λ}^{TiO} we fragmencie widma zawierającego odpowiednią strukturę absorpcyjną TiO. Obydwa rysunki wykonał mgr Jędrzej Osiwała. Wskaźniki typu widmowego zostały określone jako stosunki zmierzonych strumieni odpowiednich pól. W tabeli 1. zawarłem również szerokości pasm, w których został wyznaczony strumień w danym paśmie TiO od poziomu zerowego strumienia w widmie.

Tablica 2.1: Zakresy mierzonych pas
m TiO, a także szerokości pól pseudo
absorpcji, pseudoemisji oraz $$\rm strumienia$$

	$A_{\lambda}^{TiO}[\mathring{A}]$	$E_{\lambda}^{TiO}[{A}]$	$F_{\lambda}^{TiO}[{A}]$	Szerokość pasma $\Delta \lambda^{TiO}[\text{\AA}]$
TiO 5168Å	5158-5440	5170-5453	5170-5453	283
TiO 4955Å	4947-5158	4960-5172	4960-5172	212
TiO 4762Å	4753-4947	4766 - 4961	4766 - 4961	195
TiO 4626Å	4617-4753	4591 - 4767		
TiO 4585Å	4572-4753	4632-4767		

Rysunek 2.1: Graficzne przedstawienie idei pomiaru strumienia w pseudoabsorpcjach i pseudoemisjach.

Rysunek 2.2: Graficzne przedstawienie idei pomiaru całkowitego strumienia energii pomiędzy "dnami" lokalnych pasm TiO.

2.3 Wyniki pomiarów pasm TiO w widmach standardów

Począwszy od strony 18. zamieszczam tabele z wynikami pomiarów pól zdefiniowanych na rysunkach 2.1 i 2.2 dla standardów spektrofotometrycznych typu widmowego M. Tabele 2.2 i 2.3 zawierają wartości strumieni w mierzonych polach powstałych w wyniku absorpcji TiO pasm 4762Å, 4955Åoraz 5168Å, natomiast tabele 2.4 i 2.5 pasm 4585Åoraz 4626Å. Dane pochodzą z pomiarów pól dla wszystkich opracowanych widm szczelinowych uzyskanych przy pomocy Kanadyjskiego Spektrografu Kopernikowskiego (CCS) z lat 2002–2005. Wartości strumieni w mierzonych zakresach są wyrażone w 10⁻⁹ · erg · cm⁻² · s⁻¹ dla A_{λ}^{TiO} i E_{λ}^{TiO} oraz w 10⁻⁹ · erg · cm⁻² · s⁻¹ · Å⁻¹ dla F_{λ}^{TiO} . Wyniki pomiarów udostępnił mi na potrzeby tej pracy mgr Jędrzej Osiwała. Dla każdego pasma tlenku tytanu (TiO) podaję trzy wartości strumieni (pod warunkiem, że taka

ich ilość została w przypadku danego pasma zmierzona):

- strumień uzyskany z pomiarów pól pseudoabsorpcji $\left(\mathbf{A}_{\lambda}^{TiO}\right)$;
- strumień uzyskany z pomiarów pól pseudoemisji $(E_{\lambda}^{TiO});$
- średni strumień uzyskany z pomiarów pól pseudoemisji TiO mierzony od poziomu zera $\left(f_{\lambda}^{TiO} = \frac{F_{\lambda}^{TiO}}{\Delta\lambda^{TiO}}\right);$

W celu otrzymania wartości integralnego strumienia w polu, gdzie zmierzono F_{λ}^{TiO} , należy wartości zamieszczone w tabelach pomnożyć przez szerokość fragmentu widma, w którym był wykonywany pomiar. Dane o szerokościach odpowiednich pasm TiO zawiera *tabela 2.1*. Gwiazdy zawarte w tabeli pogrupowałem w sposób uwzględniający ich podtypy widmowe, zaczynając od obiektów najgorętszych, a na najchłodniejszych kończąc.

Typ widmowy badanych standardów zawarty w trzeciej kolumnie tabeli został zaadoptowany z danych przekazanych mi przez mgr Jędrzeja Osiwałę i pochodzi z pracy Keenana (Keenan and McNeil, 1989). W dalszych częściach tej pracy posłużą one do porównania nowych typów widmowych uzyskanych metodą, którą graficznie przedstawiłem na *rysunkach 2.1* oraz *2.2*.

Wyniki zawarte w tabelach 2.4 oraz 2.5 nie są używane w dalszej części pracy.

			$10^{-9} \cdot er$	$g \cdot cm^{-2} \cdot$	s^{-1} dla A	A_{λ}^{TiO} i E_{λ}	λ^{I_iO} i w 10	$0^{-9} \cdot erg \cdot c$	$m^{-2} \cdot s^{-2}$	$^{1} \cdot A^{-1} dl$	la $f_{\lambda}^{T_iO}$
gwiazda	data	typ	,	TiO 516	8		TiO 495	55		TiO 476	62
	obserwacji	widmowy	A_{λ}^{TiO}	E_{λ}^{TiO}	f_{λ}^{TiO}	A_{λ}^{TiO}	E_{λ}^{TiO}	f_{λ}^{TiO}	A_{λ}^{TiO}	E_{λ}^{TiO}	f_{λ}^{TiO}
HD102212	2002.03.18	M 1 III				5.37	5.53	0.104	3.61	3.4	0.106
HD102212	2003.02.23	M 1 III	4.44	11.0	0.135	5.21	5.46	0.103	3.51	3.38	0.106
HD206330	2002.08.21	M 1 III				5.44	6.15	0.11	4.01	3.71	0.109
HD144542	2002.08.28	M 1.25 III				6.37	6.15	0.113	4.24	3.76	0.111
HD204724	2002.08.21	M 1.25 III				5.19	6.03	0.109	4.03	3.51	0.108
HD222670	2002.08.24	M 2 III				7.32	7.87	0.115	5.05	4.85	0.108
HD202380	2004.04.21	M 2 I	13.7	22.7	0.255	9.44	10.4	0.167	5.92	4.48	0.128
HD23475	2004.04.14	M 2.25 II	9.07	15.2	0.154	7.92	8.50	0.119	5.66	4.99	0.11
HD23475	2004.04.15	M 2.25 II	10.2	17.2	0.175	8.47	9.16	0.128	5.90	5.16	0.113
HD190788	2004.04.26	M 2.5 II	16.7	23.5	0.224	12.1	12.7	0.153	8.13	6.16	0.116
HD42995	2003.02.23	M 2.5 III	9.9	15.3	0.144	8.57	9.13	0.111	6.25	5.73	0.103
HD167006	2002.08.28	M 3 III				9.31	9.65	0.115	6.56	6.37	0.107
HD40239	2004.03.17	M 3 II	12.7	19.1	0.151	11.5	11.5	0.117	8.18	7.51	0.104
HD40239	2004.04.15	M 3 II	13.1	19.3	0.158	11.3	11.2	0.117	8.00	7.19	0.103
HD40239	2004.04.14	M 3 II	10.7	16.4	0.132	10.4	10.2	0.108	7.79	6.91	0.099
HD9778	2003.04.25	M 3 II	10.4	16.5	0.15	9.10	9.92	0.118	6.49	6.11	0.109
HD9778	2004.03.05	M 3 II	11.0	16.8	0.155	9.17	10.0	0.116	6.61	6.01	0.106
HD9778	2004.03.15	M 3 II	10.2	17.1	133.0	8.96	9.68	108.0	6.37	5.92	102.0
HD9778	2004.04.25	M 3 II	9.68	16.1	0.148	9.05	9.16	0.116	6.59	5.74	0.106
HD124681	2004.05.13	M 3 III	10.5	18.3	0.144	10.6	9.97	0.105	7.63	6.96	0.0978
HD204599	2002.08.21	M 3.25 III				10.7	10.9	0.117	7.68	7.02	0.105
HD186776	2002.04.11	M 3.5 III				9.18	8.56	0.0967	6.86	6.40	0.0966
HD4408	2002.09.03	M 4 III	15.6	21.3	0.161	13.3	13.3	0.122	9.27	8.63	0.105
HD4408	2002.09.08	M 4 III	15.1	20.9	0.158	13.0	13.0	0.12	9.18	8.42	0.102
HD159354	2003.07.23	M 4 III	18.7	24.1	0.169	16.4	14.4	0.124	11.0	9.43	0.1
HD159354	2003.07.24	M 4 III	17.9	22.2	0.155	16.1	14.1	0.119	11.0	9.49	0.101

Tablica 2.2: Wartości strumieni w mierzonych polach A_{λ}^{TiO} , E_{λ}^{TiO} oraz strumienia średniego f_{λ}^{TiO} powstałych w wyniku absorpcji TiO w pasmach 4762Å, 4955Å oraz 5168Å. Tabela zawiera dane dla wszystkich opracowanych widm szczelinowych CCS z lat 2002–2005. Strumienie są wyrażone w $10^{-9} \cdot era \cdot cm^{-2} \cdot s^{-1}$ dla A^{TiO} i E^{TiO} i w $10^{-9} \cdot era \cdot cm^{-2} \cdot s^{-1}$, λ^{-1} dla f^{TiO}

16

gwiazda	data	typ		TiO 516	8	a <u>10</u> . en	TiO 495	5	I	TiO 476	2
0	obserwacji	widmowy	A_{λ}^{TiO}	E_{λ}^{TiO}	f_{λ}^{TiO}	A_{λ}^{TiO}	E_{λ}^{TiO}	f_{λ}^{TiO}	A_{λ}^{TiO}	E_{λ}^{TiO}	f_{λ}^{TiO}
HD175588	2004.04.15	M 4 II	20.6	24.2	0.173	16.9	0.154	0.128	11.2	9.34	0.102
HD175588	2004.05.14	M 4 II	17.6	21.2	0.152	15.2	14.4	0.122	10.6	9.21	0.102
HD175588	2004.04.25	M 4 II	18.9	22.0	0.158	16.1	14.4	0.125	11.1	9.07	0.101
HD175588	2004.04.26	M 4 II	17.8	20.5	0.15	15.3	13.9	0.12	10.9	8.66	0.0973
HD214665	2002.08.24	M 4.25 III	15.7			14.8	13.3	0.117	10.4	9.00	0.101
HD214665	2002.10.19	M 4.25 III	15.8	20.2	0.146	13.3	11.6	0.104	9.45	8.2	0.0945
HD132813	2002.04.11	M 4.5 III				15.7	13.8	0.109	11.7	9.85	0.0951
HD132813	2004.04.26	M 4.5 III	19.3	22.5	0.155	16.5	14.7	0.119	11.4	9.54	0.0952
HD204585	2003.07.23	M 4.5 III	19.3	19.0	0.151	15.6	12.7	0.118	9.86	7.52	0.0937
HD204585	2003.08.30	M 4.5 III	18.2	17.9	0.137	15.2	12.9	0.113	10.0	7.79	0.091
HD224062	2003.12.19	M 4.6 III	18.4	22.5	0.152	16.3	14.4	0.116	11.2	9.59	0.0975
HD112264	2002.03.18	M 4.75 III				19.1	15.9	0.118	13.1	10.0	0.0926
HD112264	2002.04.21	M 4.75 III				17.0	15.0	0.117	11.8	9.61	0.0952
HD112264	2004.04.26	M 4.75 III	22.7	20.9	0.144	19.1	15.4	0.118	12.7	9.39	0.09
HD156014J	2004.04.21	M 5 II	25.4	19.8	0.131	21.8	15.7	0.113	13.8	9.34	0.0832
HD172380	2004.04.26	M 5 II	28.0	23.2	0.145	23.2	17.9	0.123	15.1	10.8	0.0876
HD186532	2003.07.23	M 5 III	24.2	23.9	0.152	19.9	16.4	0.118	13.1	10.3	0.0894
HD186532	2004.03.05	M 5 III	29.2	26.2	0.16	23.1	18.7	0.126	14.8	11.4	0.0923
HD186532	2004.05.13	M 5 III	25.3	23.3	0.146	21.1	16.7	0.115	13.8	10.4	0.086
HD94705	2002.03.18	M 5.5 III				16.6	11.7	0.077	10.8	7.30	0.0562
HD94705	2003.02.23	M 5.5 III	19.8	14.3	0.0832	16.5	11.4	0.0722	10.7	7.12	0.0538
HD148783	2002.04.11	M 5.75 III				23.7	16.9	0.107	15.8	10.6	0.0795
HD179820	2002.08.24	M 6 III				17.8	13.2	0.0978	10.2	7.52	0.0695
HD18191	2002.09.02	M 6 III	28.8	22.4	0.135	23.9	17.7	0.115	15.4	10.8	0.0824
HD18191	2002.11.06	M 6 III	30.2	23.1	0.138	24.7	17.7	0.114	15.5	10.6	0.0798
HD24410	2004.01.15	M 6 III	28.8	26.4	0.164	23.5	18.5	0.127	14.8	10.9	0.0917

Tablica 2.3: Ciąg dalszy tabeli 2.2

gwiazda	data	tvp	TiO	4626	TiO	4585
0	obserwacji	widmowy	A_{λ}^{TiO}	E_{λ}^{TiO}	A_{λ}^{TiO}	E_{λ}^{TiO}
HD102212	2002.03.18	M 1 III	1.3	2.27		
HD102212	2003.02.23	M 1 III	1.32	1.87		
HD206330	2002.08.21	M 1 III	1.88	2.16		
HD144542	2002.08.28	M 1.25 III	1.75	2.11.0		
HD204724	2002.08.21	M 1.25 III	1.89	2.24		
HD222670	2002.08.24	M 2 III	1.78	2.23		2.86
HD202380	2004.04.21	M 2 I	1.90	2.01		
HD23475	2004.04.14	M 2.25 II	2.26	2.56		
HD23475	2004.04.15	M 2.25 II	2.41	2.59		
HD190788	2004.04.26	M 2.5 II	2.48	2.84		
HD42995	2003.02.23	M $2.5 \ \text{III}$	2.36	2.79		
HD167006	2002.08.28	M 3 III	2.19	2.87		3.70
HD40239	2004.03.17	M 3 II				
HD40239	2004.04.15	M 3 II				
HD40239	2004.04.14	M 3 II				
HD9778	2003.04.25	M 3 II	2.55	2.97		3.46
HD9778	2004.03.05	M 3 II	2.60	3.01		3.58
HD9778	2004.03.15	M 3 II	2.57	2.95		
HD9778	2004.04.25	M 3 II	2.53	2.90		
HD124681	2004.05.13	M 3 III				
HD204599	2002.08.21	M 3.25 III	2.68	3.24		3.96
HD186776	2002.04.11	M 3.5 III	2.22	3.21	2.74	3.90
HD4408	2002.09.03	M 4 III	3.27	3.67	3.59	4.43
HD4408	2002.09.08	M 4 III	3.26	3.77	3.64	4.48
HD159354	2003.07.23	M 4 III	3.60	4.09	4.60	5.01
HD159354	2003.07.24	M 4 III	3.60	4.02	4.65	4.96
HD175588	2004.04.15	M 4 II	3.73	4.08	4.47	4.97
HD175588	2004.05.14	M 4 II	3.58	3.99	4.17	4.86
HD175588	2004.04.25	M 4 II	3.74	3.93	4.44	4.76
HD175588	2004.04.26	M 4 II	3.62	3.91	4.35	4.79
HD214665	2002.08.24	M 4.25 III	3.46	3.98	4.31	4.90
HD214665	2002.10.19	M 4.25 III			4.0	5.02
HD132813	2002.04.11	M 4.5 III	3.97	4.48	5.24	5.50
HD132813	2004.04.26	M 4.5 III			5.21	5.49
HD204585	2003.07.23	M 4.5 III	3.02	3.14	4.20	3.94
HD204585	2003.08.30	M 4.5 III	3.08	3.28	4.26	4.09
HD224062	2003.12.19	M 4.6 III	3.63	4.19	4.79	5.14
HD112264	2002.03.18	M 4.75 III	4.16	4.29	5.79	5.41
HD112264	2002.04.21	M 4.75 III	3.79	4.16	5.02	5.12
HD112264	2004.04.26	M 4.75 III			5.51	5.06
HD156014J	2004.04.21	M 5 II	3.62	3.99	5.73	4.97

Tablica 2.4: Wartości strumieni w mierzonych polach A_{λ}^{TiO} oraz E_{λ}^{TiO} powstałych w wyniku absorpcji TiO w pasmach 4585Å oraz 4626Å. Tabela zawiera dane dla wszystkich opracowanych widm szczelinowych CCS z lat 2002–2005. Strumienie są wyrażone w $10^{-9} \cdot erg \cdot cm^{-2} \cdot s^{-1}$.

gwiazda	data	tvp	TiO	4626	TiO	4585
0		-5 T	_		-	
	obserwacji	widmowy	A_{λ}^{TiO}	E_{λ}^{TiO}	A_{λ}^{TiO}	E_{λ}^{TiO}
HD172380	2004.04.26	M 5 II	4.22	4.63	6.35	5.86
HD186532	2003.07.23	M 5 III			6.02	5.48
HD186532	2004.03.05	M 5 III			6.51	6.2
HD186532	2004.05.13	M 5 III			6.35	5.79
HD94705	2002.03.18	M 5.5 III	2.95	3.20	4.70	3.40
HD94705	2003.02.23	M 5.5 III	2.96	3.22	4.87	4.03
HD148783	2002.04.11	M 5.75 III	4.48	4.66	7.12	5.84
HD179820	2002.08.24	M 6 III	2.41	3.04	3.78	3.74
HD18191	2002.09.02	M 6 III	4.12	4.62	6.62	5.72
HD18191	2002.11.06	M 6 III	4.43	4.73	6.95	5.98
HD24410	2004.01.15	M 6 III			6.0	5.46

Tablica 2.5: Ciąg dalszy tabeli 2.4

2.4 Oszacowanie typu widmowego oraz pomiary struktur TiO dla zmiennych typu mira

Określenie typu widmowego dla gwiazd zmiennych typu mira zostało dokonane z uwzględnieniem aktualnej fazy zmian blasku dla danej gwiazdy. Typ widmowy dla różnej fazy wraz z wielkością gwiazdową V został zaczerpnięty z pracy Keenana (Keenan et al., 1974). Epoki sfazowano poprzez przesunięcie do toruńskiej fotometrii (jeśli dysponowano takimi danymi) i do współcześnie wyznaczonych przez obserwacje miłośników astronomii AFOEV (Association Française des Observateurs d'Etoiles Variables) momentów maksimum i minimum blasku. Sfazowanie nastąpiło o całkowitą wielokrotność okresu zmian blasku (okres według GCVS4.2 2004 (Samus and Durlevich, 2004)) oraz przez dodanie stałego przesunięcia w fazie. Oś rzędnych to data juliańska 2400000+. Strzałki oznaczają momenty obserwacji (końcówki dat julianskich), natomiast groty strzałek - przyjęty typ widmowy. Oszacowania typu widmowego dokonano dla pięciu mir: o Ceti, R Cas, R Leo, R Tri oraz R Aqr. Dla ostatnich dwóch z wymienionych obok gwiazd nie posiadam aktualnych danych z toruńskiej fotometrii. W tabeli 2.6 przedstawiam wyniki pomiarów pól TiO w pasmach 4762Å, 4955Å oraz 5168Å, natomiast w tabeli 2.7 dla pasm 4585Åi 4626Ådla zmiennych typu mira. Czwarta kolumna to data juliańska momentu obserwacji oraz faza określona ilością dni od ostatniego maksimum blasku. Znak minus oznacza,że faza była wyznaczona względem następnego maksimum blasku. Strumienie zmierzonych pól są wyrażone w $10^{-9} \cdot erg \cdot cm^{-2} \cdot s^{-1} \cdot A^{-1}$ dla f_{λ}^{TiO} oraz w $10^{-9} \cdot erg \cdot cm^{-2} \cdot s^{-1}$ dla A_{λ}^{TiO} i E_{λ}^{TiO} .

Rysunek 2.3: Oszacowanie typu widmowego dla gwiazdy *omicron* Ceti (Miry) względem aktualnej fazy zmian blasku z uwzględnieniem toruńskiej fotometrii. Strzałki oznaczają momenty obserwacji (końcówki dat juliańskich), a groty strzałek przyjęty typ widmowy.

Rysunek 2.4: Oszacowanie typu widmowego dla gwiazdy R Cas względem aktualnej fazy zmian blasku bez uwzględnienia toruńskiej fotometrii. Strzałki oznaczają momenty obserwacji (końcówki dat juliańskich), a groty strzałek przyjęty typ widmowy.

Rysunek 2.5: Oszacowanie typu widmowego dla gwiazdy R Leo względem aktualnej fazy zmian blasku z uwzględnieniem toruńskiej fotometrii. Strzałki oznaczają momenty obserwacji (końcówki dat juliańskich), a groty strzałek przyjęty typ widmowy.

Rysunek 2.6: Oszacowanie typu widmowego dla gwiazdy R Tri względem aktualnej fazy zmian blasku bez uwzględnienia toruńskiej fotometrii. Strzałki oznaczają momenty obserwacji (końcówki dat juliańskich), a groty strzałek przyjęty typ widmowy.

Rysunek 2.7: Oszacowanie typu widmowego dla gwiazdy R Aqr
 względem aktualnej fazy zmian blasku bez uwzględnienia toruńskiej fotometrii.

	St	rumienie zmi	erzonych pól	są wyrażone	$e \le 10^{-9}$	$\cdot erg \cdot cr$	$n^{-2} \cdot s^{-1}$	$\cdot \cdot \mathring{A}^{-1}$ d	la f_{λ}^{TiO} c	$raz \le 10^{-1}$	$^{-9} \cdot erg \cdot$	$cm^{-2} \cdot s$	$^{-1}$ dla A_{λ}^{T}
gwiazda	data	Тур	JD	faza[dni]		TiO 5168	3		TiO 4955	5		TiO 476	2
-	obserwacji	widmowy	+2450000		A_{λ}^{TiO}	E_{λ}^{TiO}	f_{λ}^{TiO}	A_{λ}^{TiO}	E_{λ}^{TiO}	f_{λ}^{TiO}	A_{λ}^{TiO}	E_{λ}^{TiO}	f_{λ}^{TiO}
RCas	2002.09.08	M 8.75	2526.5	291	75.8	43.4	0.238	49.3	26.7	0.139	25.8	14.5	0.785
RCas	2004.03.05	M 6.75	3070.3	421	31.1	20.7	0.129	25.1	17.9	0.106	15.0	11.4	0.0735
RLeo	2002.03.18	M 7.5	2352.4	69.7				24.7	14.7	0.0834	13.5	8.94	0.0538
RLeo	2003.02.21	M 7.5	2692.5	97.2	36.0	22.5	0.132	25.4	16.3	0.09	13.5	9.78	0.0583
RLeo	2003.02.22	M 7.5	2693.4	98	36.0	22.4	0.13	25.3	16.3	0.0877	13.5	9.82	0.0574
RLeo	2003.03.15	M 7.75	2714.5	119.2	40.2	26.1	0.15	28.2	17.8	0.0951	14.7	10.4	0.0621
RLeo	2003.04.02	M 8	2732.4	137.1	44.2	27.7	0.167	30.3	18.6	0.101	15.1	11.0	0.0656
RLeo	2003.04.11	M 8	2741.4	146.1	36.4	23.6	0.143	24.4	14.8	0.0835	11.7	8.77	0.0571
RLeo	2004.03.17	M 8.5	3082.4	147.5	76.8	44.8	0.241	50.0	26.0	0.133	26.8	15.6	0.0804
RLeo	2004.04.16	M 8.5	3112.4	204.5	79.6	47.8	0.27	50.4	27.5	0.141	26.1	16.0	0.0857
	2002 02 24			100					10.0			10.4	a a a a a a
RIn	2002.08.21	M 7.25	2508.5	-182				27.2	19.3	0.105	15.0	10.4	0.0628
RTri	2002.10.19	M 8	2567.6	-113	41.3	25.8	0.139	28.9	18.1	0.0948	15.6	10.1	0.0581
RTri	2002.11.06	M 8	2585.3	-96	41.2	23.7	0.124	31.4	18.1	0.0968	17.0	9.72	0.0593
ami Cat	9009 19 10	MOTE	9002.2	160	49.0	01.0	0.110	21.0	16 /	0.0024	16.0	0.4	0.0622
omi Cet	2003.12.19	M 8.75	2993.3	100	42.9	21.2	0.119	31.9	10.4	0.0934	16.9	9.4	0.0632
omi Cet	2004.02.19	M 9.25	3055.2	215	40.7	18.9	0.124	29.9	13.7	0.962	15.7	1.0	0.0693
		I	I										
R Aqr	2002.08.28	M 7.25	2515		I —	_	_	28.3	18.4	0.104	17.0	11.0	0.0653

Tablica 2.6: Pomiary pól w pasmach 5168Å, 4955Å oraz 4762Å dla zmiennych typu Mira. W 4 kolumnie znajduje się data juliańska momentu obserwacji oraz faza określona ilością dni od ostatniego poprzedzającego maksimum blasku (wg. efemeryd AFOEV) - znak minus oznacza, że faza była wyznaczona względem następnego maksimum blasku. Strumienie zmierzonych pól są wyrażone w $10^{-9} \cdot erg \cdot cm^{-2} \cdot s^{-1} \cdot Å^{-1}$ dla f_{λ}^{TiO} oraz w $10^{-9} \cdot erg \cdot cm^{-2} \cdot s^{-1}$ dla A_{λ}^{TiO} i E_{λ}^{TiO} .

Tablica 2.7: Pomiary pól w pasmach 4626Å oraz 4585Å dla zmiennych typu Mira. W 4 kolumnie znajduje
się data juliańska momentu obserwacji oraz faza określona ilością dni od ostatniego poprzedzającego
maksimum blasku (wg. efemeryd AFOEV) - znak minus oznacza, że faza była wyznaczona względem
następnego maksimum blasku. Strumienie zmierzonych pól są wyrażone w $10^{-9} \cdot erg \cdot cm^{-2} \cdot s^{-1}$ dla A_{λ}^{TiO}
$i E_{i}^{TiO}$.
Λ

gwiazda	data	typ	JD	faza[dni]	TiO	4626	TiO	4585
	obserwacji	widmowy	+2450000		A_{λ}^{TiO}	E_{λ}^{TiO}	A_{λ}^{TiO}	E_{λ}^{TiO}
RCas	2002.09.08	M 8.75	2526.5	4.31	4.96			
RCas	2004.03.05	$M \ 6.75$	3070.3	3.17	5.48			
RLeo	2002.03.18	M 7.5	2352.4	2.3	3.73	5.18	47.0	
RLeo	2003.02.21	M 7.5	2692.5					
RLeo	2003.02.22	M 7.5	2693.4					
RLeo	2003.03.15	M 7.75	2714.5					
RLeo	2003.04.02	M 8	2732.4					
RLeo	2003.04.11	M 8	2741.4					
RLeo	2004.03.17	M 8.5	3082.4					
RLeo	2004.04.16	M 8.5	3112.4					
RTri	2002.08.21	M 7.25	2508.5	-182	3.12	4.19		—
RTri	2002.10.19	M 8	2567.6	-113	3.14	4.16		
RTri	2002.11.06	M 8	2585.3	-96	3.5	3.83		
omi Cet	2003.12.19	M 8.75	2993.3	160				
omi Cet	2004.02.19	M 9.25	3055.2	215				
\mathbf{R} Aqr	2002.08.28	M 7.25	2515					

2.5 Typ widmowy w zależności od struktur TiO

Typ widmowy dla standardów typu M oraz mir został określony przez dopasowanie wielomianów do dwóch zależności uwzględniających pseudoabsorpcję i strumień od poziomu zera w strukturach TiO. Pierwsza z nich ma postać: $spM = f\left(\frac{A_{5168}^{TiO} + A_{4955}^{TiO} + A_{4762}^{TiO}}{F_{5168}^{TiO} + F_{4752}^{TiO} + F_{4762}^{TiO}}\right)$, druga: $spM = f\left(\frac{A_{4955}^{TiO} + A_{4762}^{TiO}}{F_{4955}^{TiO} + F_{4762}^{TiO}}\right)$, gdzie poszczególne wielkości są strumieniami z pól pseudoabsorpcji konkretnych pasm TiO oraz całkowitymi strumieniami mierzonymi od zera dla tych struktur. Wykresy zamieszczone na *rysunku 2.8.* ukazują zależność typu widmowego od stosunku $\frac{A_{5}^{TiO}}{F_{5}^{TiO}}$ dla sum pasm TiO takich jak w powyższych wyrażeniach na spM. Krzyżami oznaczyłem gwiazdy III klasy jasności, kółkami zamkniętymi gwiazdy typu mira, otwartymi natomiast gwiazdy klasy jasności I i II. Pod wykresami zamieściłem wzory wielomianów dopasowanych do punktów na wykresach.

Rysunek 2.8: Zależności typu widmowego od stosunku $\frac{A_{\lambda}^{TiO}}{F_{\lambda}^{TiO}}$ dla sumy pasm TiO dla mir (kropki), gwiazd klasy jasności I i II (kółka otwarte) oraz gwiazd klasy jasności III (tu oznaczonych krzyżykami). Pod wykresami wzory wielomianów dopasowanych do punktów na wykresach. Argument "x" jest stosunkiem A/F odłożonym na osiach odciętych wykresów.

ROZDZIAŁ 2. POMIARY TIO W WIDMACH STANDARDÓW TYPU M

Na rysunku 2.9 przedstawiam wykres zależności typu widmowego od stosunku $\frac{A_{\lambda}^{TiO}}{E_{\lambda}^{TiO}}$ dla sumy trzech pasm tlenku tytanu (5168Å, 4955Åoraz 4762Å). Na osi zostały odłożone podtypy typu widmowego M zaczerpnięte z pracy Keenana (Keenan and McNeil, 1989). Do uzyskanego rozkładu został dopasowany wielomian drugiego rzędu (wzór pod wykresem). Wielomian ten posłuży w rozdziale 5. do wyznaczenia typu widmowego najczęściej obserwowanych w toruńskim ośrodku gwiazd symbiotycznych. Ze względu na złożoność widma takich układów (a ściślej, ze względu na obecność gorącego składnika) nie można w wyznaczniu nowych typów stosować zależności uzyskanych przez dopasowanie wielomianu do rozkładów pokazanych na rysunku 2.8, gdyż nie wiemy, gdzie znajduje się poziom zera dla strumienia energii chłodnego składnika.

Rysunek 2.9: Zależności typu widmowego od stosunku $\frac{A_{L}^{TiO}}{E_{\lambda}^{TiO}}$ dla mir (kropki), gwiazd klasy jasności I i II (kółka otwarte) oraz gwiazd klasy jasności III (tu oznaczonych krzyżykami). Pod wykresem wzór wielomianu dopasowanego do punktów na wykresie. Argument "x" jest stosunkiem A/E odłożonym na osi odciętych wykresu.

Tablica 2.8: Nowe typy widmowe uzyskane za pomocą dopasowanego wielomianu do funkcji	
$spM = f\Big(\frac{A_{5168}^{TiO} + A_{4955}^{TiO} + A_{4762}^{TiO}}{F_{5168}^{TiO} + F_{4955}^{TiO} + F_{4762}^{TiO}}\Big) \text{ oznaczonego jako wzór (2.2) i } spM = f\Big(\frac{A_{4955}^{TiO} + A_{4762}^{TiO}}{F_{4955}^{TiO} + F_{4762}^{TiO}}\Big) \text{ oznaczonego jako wzór (2.1); (odpowiednio 3 i 4 oraz 7 i 8 kolumna tabeli)}$	cO

gwiazda	data	$M_{wz \acute{o}r(2.1)}$	$M_{wz \acute{o}r(2.2)}$	gwiazda	data	$M_{wz \acute{o}r(2.2)}$	$M_{wz \acute{o}r(2.1)}$
	obserwacji				obserwacji		
— klasa jasności I i				HD214665	2002.08.24	3.77	4.10
HD23475	2004.04.14	2.52	2.13	HD214665	2002.10.19	3.99	4.08
HD23475	2004.04.15	2.53	2.16	HD4408	2002.09.03	3.64	3.61
HD40239	2004.03.17	3.35	3.27	HD4408	2002.09.08	3.63	3.61
HD40239	2004.04.15	3.30	3.22	HD112264	2002.03.18		5.09
HD40239	2004.04.14	3.31	3.23	HD112264	2004.04.26		4.66
HD97778	2003.04.25	2.85	2.54	HD112264	2002.04.21	5.05	5.08
HD97778	2004.03.05	2.79	2.53	HD186532	2003.07.23	5.13	5.23
HD97778	2004.03.15	2.69	2.38	HD186532	2004.03.05	5.54	5.55
HD97778	2004.04.14	2.80	2.57	HD186532	2004.05.13	5.46	5.55
HD190788	2004.04.26	2.95	2.75	HD224062	2003.12.19	4.34	4.47
HD175588	2004.04.15	4.15	4.26	HD94705	2002.03.18		6.20
HD175588	2004.05.14	4.06	4.04	HD94705	2003.02.22	6.55	6.39
HD175588	2004.04.25	4.17	4.20	HD148783	2002.04.11		6.31
HD175588	2004.04.26	4.16	4.22	HD179820	2002.08.24		5.39
HD172380	2004.04.26	5.68	5.66	HD18191	2002.09.02	6.14	6.07
	— klasa ja	asności III		HD18191	2002.11.06	6.27	6.23
HD102212	2002.03.18		1.49	HD24410	2004.01.15	5.49	5.58
HD102212	2003.02.23		1.44		zmienne typ	u Mira Ceti	
HD144542	2002.08.28		1.68	RAqr	2002.08.28		7.24
HD204724	2002.08.21		1.47	RCas	2002.09.08	8.09	8.52
HD206330	2002.08.21		1.50	RCas	2004.03.05	6.63	6.51
HD222670	2002.08.24		2.02	RCas	2003.09.21	8.03	8.54
HD167006	2002.08.28		2.64	RCas	2005.08.18	7.71	7.75
HD204599	2002.08.21		3.05	RTri	2002.08.21		6.98
HD42995	2003.02.23	2.85	2.56	RTri	2002.10.19	7.62	7.62
HD124681	2004.05.13	3.23	3.30	RTri	2002.11.06	8.05	7.93
HD132813	2002.04.11		4.62	oCet	2003.09.05	7.00	6.75
HD132813	2004.04.26	4.39	4.51	RLeo	2002.03.18		7.42
HD159354	2003.07.23	4.12	4.29	RLeo	2003.02.21	7.20	7.16
HD159354	2003.07.24	4.20	4.32	RLeo	2003.02.22	7.28	7.25
HD186776	2002.04.11		3.07	RLeo	2003.03.15	7.23	7.33
HD204585	2003.07.23	4.28	4.23	RLeo	2003.04.02	7.18	7.33
HD204585	2003.08.30	4.40	4.33	RLeo	2003.04.11	6.96	7.08
				RLeo	2004.03.17	8.09	8.72
				RLeo	2004.04.16	7.74	8.29

W tabeli 2.8 (poprzednia strona) przestawiam typy widmowe dla gwiazd I, II i III klasy jasności, a także dla mir uzyskane przez mgr Jędrzeja Osiwałę, które zostały otrzymane z zależności:

$$spM = -1.59(x)^2 + 7.58(x) + 0.77$$
(2.1)

dla wartości widniejących w kolumnach 3 i 7 oraz

$$spM = 1.39(x)^3 - 5.71(x)^2 + 11.11(x) - 0.61$$
(2.2)

dla wartości w kolumnach 4 i 8, gdzie $x = \frac{A_{\lambda}^{TiO}}{F_{\lambda}^{TiO}}$.

2.6 Średnie typy widmowe i rozkłady energii w ich widmach

W tabeli 2.9 przedstawiam średnie typy widmowe oraz listę gwiazd, których widma zostały uśrednione. Uśrednianie przeprowadzono dla gwiazd klasy jasności III przy założeniu, że nie są one poczerwienione. Otrzymane typy widmowe są średnią arytmetyczną typów widmowych gwiazd branych do uśredniania, wcześniej uzyskanych przez dopasowanie wielomianu do zależności (2.2). W dalszej kolejności zamieszczam wykresy rozkładów energii takich "sztucznych" gwiazd. Poniższe zależności jak również dołączone wykresy są wynikiem pracy mgr Jędrzeja Osiwały.

1001	64 2 .01 0 51 6 4	one typy maniewer opie	5811 J 28J.
gwiazda	data	typ widmowy	uśredniony
	obserwacji	przed uśrednieniem	typ widmowy
HD102212	2002.03.18	M 1.49	
HD102212	2003.02.23	M 1.44	
HD204724	2002.08.21	$M \ 1.47$	M 1.52 ± 0.03
HD206330	2002.08.21	$M \ 1.50$	
HD144542	2002.08.28	M 1.68	
HD42995	2003.02.23	M 2.56	
HD167006	2002.08.28	M 2.64	
HD186776	2002.04.11	M 3.07	M 3.13 ± 1.19
HD124681	2004.05.13	M 3.30	
HD4408	2002.09.03	M 3.61	
HD4408	2002.09.08	M 3.61	
HD214665	2002.10.19	M 4.08	
HD214665	2002.08.24	M 4.10	
HD204585	2003.07.23	M 4.23	
HD159354	2003.07.23	M 4.29	

Tablica 2.9: Uśrednione typy widmowe. Opis powyżej.

Tablica 2.10. Cląg dalszy tabeli 9.				
gwiazda	data	typ widmowy	uśredniony	
	obserwacji	przed uśrednieniem	typ widmowy	
HD159354	2003.07.24	M 4.32	M 4.35 ± 0.06	
HD204585	2003.08.30	M 4.33		
HD224062	2003.12.19	M 4.47		
HD132813	2004.04.26	M 4.51		
HD132813	2002.04.11	M 4.62		
HD112264	2002.04.21	M 4.66		
HD112264	2004.04.26	M 5.08		
HD112264	2002.03.18	M 5.09		
HD186532	2003.07.23	M 5.23	M 5.35 ± 0.10	
HD186532	2004.03.05	M 5.55		
HD186532	2004.05.13	M 5.55		
HD24410	2004.01.15	M 5.58		
HD18191	2002.09.02	M 6.07		
HD94705	2002.03.18	M 6.20		
HD18191	2002.11.06	M 6.23	M 6.24 ± 0.05	
HD148783	2002.04.11	M 6.31		
HD94705	2003.02.23	M 6.39		

Tablica 2.10: Ciąg dalszy tabeli 9.

Na rysunkach 2.10–2.14 przedstawiam średnie rozkłady energii dla uśrednionych podtypów widmowych standardów spektrofotometrycznych typu M.

Rysunek 2.10: Rozkład energii uśrednionego typu widmowego M 1.52 (patrz tabela 2.9.).

Rysunek 2.11: Rozkład energii uśrednionego typu widmowego M $3.13~({\rm patrz}\ tabela\ 2.9.)$

Rysunek 2.12: Rozkład energii uśrednionego typu widmowego M 4.35 (patrz tabela 2.9 i 2.10).

Rysunek 2.13: Rozkład energii uśrednionego typu widmowego M 5.35 (patrz tabela 2.10).

Rysunek 2.14: Rozkład energii uśrednionego typu widmowego M 6.24 (patrz tabela 2.10).

Rozdział 3

Rozkłady energii w widmach gwiazd symbiotycznych

3.1 Kalibracja danych obserwacyjnych

Ekstrakcji widm pochodzących z CCS dokonywałem głównie przy pomocy procedur dostarczanych wraz z jednym z pakietów środowiska IRAF o nazwie KPNOSLIT. Jako widma porównania posłużyły mi widma lampy torowoargonowej (ThAr-zimna katoda w osłonie argonu). Widma te były osobnymi, kilkusekundowymi ekspozycjami stowarzyszonymi z widmami obserwowanych gwiazd dla każdego położenia teleskopu. Miało to na celu wyeliminowanie ewentualnych przesunięć i ugięć elementów optycznych w wyniku ruchu teleskopu. Po identyfikacji od 20 do około 30 linii w widmie porównania była wyznaczana krzywa dsypersji (przez dopasowanie wielomianu trzeciego stopnia). Aby odtworzyć rzeczywisty rozkład energii należy uwzględnić wiele czynników takich jak czułość spektralna detektora, wybiórczy wpływ elementów optycznych teleskopu i spektrografu na promieniowanie, a także wpływ atmosfery ziemskiej. W tym celu konieczne jest pomnożenie widma $n(\lambda)$ przez krzywa czułości instrumentalnej $S(\lambda)$ oraz usunąć wpływ atmosfery ziemskiej poprzez uwzględnienie ekstynkcji atmosferycznej $E(\lambda)$. Dlatego też widmo $n(\lambda)$ można wyrazić następująco:

$$n(\lambda) = C(\lambda) \cdot F(\lambda) \tag{3.1}$$

gdzie $F(\lambda)$ jest rzeczywsitym rozkładem energii w widmie, a $C(\lambda)$ jest funkcją, która reprezentuje wpływ aparatury i atmosfery ziemskiej na promieniowanie, które rejestrujemy. Funkcję $F(\lambda)$ uzyskujemy rejestrując obok widm gwiazd badanych widma standardów spektrofotometrycznych, czyli stałych gwiazd o znanym rozkładzie energii w widmie. Otrzymana krzywa $C(\lambda)$ odnosi się tylko

36ROZDZIAŁ 3. ROZKŁADY ENERGII W WIDMACH GWIAZD SYMBIOTYCZNYCH

do obserwacji na podobnych odległośiach zenitalnych, gdyż zawiera w sobie dodatkowo czynnik nieprzezroczystości atmosfery zależny od długości fali światła dla konkretnego słupa powietrza i aktualnego stanu atmosfery ziemskiej. Czynnik ten nosi nazwę ekstynkcji atmosferycznej $E(\lambda)$ i wyrażony jest w magnitudo. Określa on ilość strat światła po przejściu przez atmosferę ziemską w zenicie. Dla różnych odległości zenitalnych z wprowadza się czynnik masy powietrznej A, który w zenicie jest równy 1 i rośnie wraz z z.

$$A \cong \sec z \tag{3.2}$$

Jest to przybliżenie przy założeniu, że atmosfera jest płaskorównoległą warstwą gazu. Masy powietrzne są obliczane przy pomocy procedur środowiska IRAF. Do celów spektroskopowych ekstynkcje atmosferyczna powinno sie wyznaczać z obserwacji, gdyż nie da się jej określić teoretycznie z dostateczną dokładnościa. By tego dokonać należy zarejestrować widma gwiazd standardowych przy możliwie dużej różnicy nas powietrznych w tych samych warunkach pogodowych. Standardy spektrofotometryczne są gwiazdami stałymi, które mają wyznaczony średni strumień dla masy powietrznej A = 0 przypadający na fragment widma (tzw. pasmo). Dane o rozkładach energii w widmach standardów spektrofotometrycznych najczęściej zawierają informacje o obserwowanym w zenicie strumieniu elektromagnetycznym w funkcji długości fali i są zapisane w postaci tabeli składającej się z trzech kolumn. W pierwszej znajdują się długości fali środka pasma, w którym jest wyznaczony średni strumień. W drugiej widnieje wartość tego strumienia, a w trzeciej szerokość pasma. Przy pomocy procedury SENSFUNC uzusykujemy krzywą czułości (rysunek 3.1). Procedura ta umożliwia uwzględnienie ekstynkcji atmosferycznej. Na potrzeby tej pracy stosowałem średnia krzywa czułości dla CCS w używanej konfiguracji. Krzywa czułości jest dostępna na płycie załączonej do tej pracy.

Rysunek 3.1: Krzywa czułości instrumentalnej dla konfiguracji używanej przy zbieraniu danych obserwacyjnych na potrzeby tej pracy.

Kalibracja danych obserwacyjnych przebiegała w sposób opisany powyżej, a sfinalizowana została przy pomocy aplikacji CALIBRATE. Aplikacja ta pozwala na przekalibrowanie widm do jednostek strumieni energii z uwzględnieniem ekstynkcji atmosferycznej i przy użyciu krzywej czułości uzyskanej w procedurze SENSFUNC. Nowe widmo jest funkcją długości fali λ . Zbiór wartości tej funkcji wyrażony jest w $erg \cdot cm^{-2} \cdot s^{-1} \cdot \mathring{A}^{-1}$ lub $erg \cdot cm^{-2} \cdot s^{-1} \cdot Hz^{-1}$ Uwzględnione w tej pracy układy symbiotyczne to: AG Peg, AX Per, BX Mon, CI Cyg, MWC560, NQ Gem, RS Oph, T CrB, TX CVn, V934 Her, YY Her, Z And oraz ZZ CMi. Dla układów takich jak: EG And, V627 Cas, V1016 Cyg, a także PU Vul nie udało się uzyskac rozkładów energii mimo, iż ich obserwacje były prowadzone. Powodem tego jest niewystarczająca ilość widm o zadowalającej jakości, jak również niesprzyjająca powtórzeniu obserwacji tych układów pora roku. Dodatkowo gwiazdy AG Dra oraz CH Cyg zostały odrzucone jako obiekty, opracowywane w innym projekcie.

3.2 Rozkłady energii gwiazd symbiotycznych

Na rysunkach 3.2-3.25 przedstawiam uzyskane rozkłady energii dla układów gwiazd symbiotycznych wybranych na podstawie pracy magisterskiej Ariela Majchera (Majcher, 2004). Z jego pracy pochodzą również wszystkie opisy gwiazd zamieszczone w podrozdziałach 3.2.1–3.2.13, z wyjątkiem opisu MWC 560. Dla jedenastu obiektów dołączam obraz widma uzyskany w obserwatorium Asiago. Obserwacje w Asiago zostały wykonane na teleskopie o średnicy 1.5 m z siatką dyfrakcyjną 400 rys/mm. Obrazy widm są skanami pochodzącymi z pracy Munariego (Munari and Zwitter, 2002). Strumienie energii dla załączonych widm wyrażone są w takich samych jednostkach i rzędach wielkości jak widma uzyskane na toruńskim spektrografie, tzn. w $10^{-13} \cdot erg \cdot cm^{-2} \cdot s^{-1} \cdot Å^{-1}$. Pod każdym widmem zamieszczam w nawiasie datę obserwacji obiektu.

3.2.1 AG Peg

Jest to najstarsza ze znanych obecnie gwiazd symbiotycznych. W latach pięćdziesiątych XIX wieku nastąpił wybuch, który zwiększył jej jasność o 3 magnitudo co pozwoliło sklasyfikować ja jako wybuchowa gwiazdę podwójna, obecnie wymienianą jako nowa symbiotyczna (Kenyon, 1986; Kenyon et al., 1993). AG Peg to gwiazda spektroskopowo podwójna, u której nie występują zaćmienia, a zmiany blasku są powodowane odbiciem światła małej, bardzo gorącej gwiazdy (T = 9000K), przypominającej gwiazdę Wolfa-Raveta o typie WN6 z szerokimi liniami emisyjnymi HII i NV (Tomov et al., 1998) od atmosfery chłodnego olbrzyma M3 III (Belyakina, 1970). Olbrzym nie wypełnia powierzchni Roche'a (Chochol et al., 1998). Okres orbitalny układu (wyznaczony na podstawie zmian prędkości radialnych) wynosi około 800 dni. Chłodny składnik układu jest typowym olbrzymem M3, a cały układ jest zanużony w kilku warstawach zjonizowanego gazu (Kenny et al., 1991), stąd AG Peg jest dobrym laboratorium do badania zderzających się wiatrów gwiazdowych. Wiatr z olbrzyma wieje z prędkością 20 km/s, a tempo utraty masy przez chłodny składnik wynosi $2 \cdot 10^{-7} M_{\odot}/rok$ i nie zmienia się (Muerset et al., 1995). Natomiast w przypadku gorącego towarzysza tempo utraty masy spadło z $1.48 \cdot 10^{-7}$ do $7.98 \cdot 10^{-8} M_{\odot}/rok$ w ciągu trzech lat, a prędkość wiatru wynosi 1000 km/s (Tomov et al., 1998). Na rysunku 3.2 przedstawiam przykładowy rozkład energii w funkcji długości fali dla układu AG Peg z nocy 06.09.2003.

Rysunek 3.2: Przykładowy rozkład energii dla układu AG Peg z nocy 06.09.2003.

Rysunek 3.3: Rozkład energii dla układu AG Peg z katalogu Munariego i Zwittera (2002) z nocy 29.05.1996. Jednostka strumienia energii taka jak na rysunku 3.2.

3.2.2 AX Per

Gwiazda symbiotyczna AX Per została odkryta w 1932 roku (Merrill et al., 1932). Dyskusję zmienności fotometrycznej podjęto w tym samym roku po odnotowaniu około 650–dniowych oscylacji, które pojawiły się po wybychach w 1887 oraz 1924 roku (Kenyon, 1982). Zmienności oscylacji okazały się podobne do tych po wybuchach Z And i CH Cyg (Payne-Gaposchkin, 1946; Mattei et al., 1997) i miały amplitudę zmian rzędu 1–2 mag z gwałtownym wzrostem jasności do maksimum i spadkiem w (B - V). Do tej pory zaobserwowano 5 dużych wybuchów w latach 1893 (Lindsay, 1932), 1924 (Payne-Gaposchkin, 1946), 1949, 1978, 1988 oraz kilka małych erupcji.

AX Per okazała się układem zaćmieniowym o okresie orbitalnym 680.8 dnia. Analizy osiąnych minimów pokazują systematyczny spadek okresu w tempie 2dni/100lat, dzięki czemu otrzymano spadek masy $10^{-5}M_{\odot}/rok$ dla chłodnego składnika (o rozmiarach zbliżonych do rozmiarów Słońca) i składnika gorącego o masie około $0.4M_{\odot}$.

Widmo AX Per pokazuje cechy powszechne u większości gwiazd symbiotycznych, tj. intensywne linie H I, He II, O III, Ne III, Fe II nałożone na widmo absorpcyjne olbrzyma późnego typu.

Chłodny składnik jest olbrzymem najprawdopodobniej typu M3 III lub późniejszym (Merrill, 1944; Kenyon and Gallagher, 1983). Kenyon and Fernandez-Castro (1987) wskazują na typ pomiędzy M3.5 a M5.5 i klasę jasności pośrednią między II a III. Olbrzym wypełnia strefę Roche'a i materia przepływa na dysk akrecyjny otaczający małomasywną gwiazdę ciągu głównego. Jasność dysku zmienia sie od $L_{dysk} \sim 100L_{\odot}$ w fazie spokojnej do $L_{dysk} \sim 5700L_{\odot}$ w wybuchu, przy założeniu odległości 2.5 kpc (Mikolajewska and Kenyon, 1992).

W wizualnej krzywej blasku obserwuje się szeroie zmienności w ingresie i egresie. Dla ich wyjaśnienia postuluje się przesłanianie gorącego składnika przez pyłową otoczkę otaczjącą olbrzyma późnego typu, w której także zanurzony jest gorący składnik.

Rysunek 3.4 przedstawia przykładowy rozkład energii układu AX Per z nocy 17.08.2005. Na rysunku 3.5 widnieje rozkład energii pochodzący z katalogu Munariego i Zwittera (2002).

Rysunek 3.4: Przykładowy rozkład energii dla układu AX Per z nocy 17.08.2005.

Rysunek 3.5: Rozkład energii dla układu AX Per z katalogu Munariego i Zwittera (2002) z nocy 15.10.1995. Jednostka strumienia energii taka jak na rysunku 3.4.

3.2.3 BX Mon

Osobliwa natura widma BX Mon została zauważona po raz pierwszy przez Mayall w 1940 roku. Merrill and Burwell (1950) obserwowali bardzo silną emisję H_{α} i później gwiazda została sklasyfikowana przez Bidelmana (Bidelman, 1954) jako symbiotyczna. Charakterystyczne dla gwiazd linie jonizacyjne HeII i OIII zaobserwował Iijima (1984).

BX Mon to układ podwójny zaćmieniowy o długim okresie wynoszącym 1401 dni i prawdopodobnie eliptycznej orbicie o mimośrodzie e = 0.49 (Dumm et al., 1998). Natomiast Fekel et al. (2000) z 28 prędkości radialnych otrzymali inny, znacznie krótszy okres wynoszący 1259 dni, który jest porównywalny z wartością otrzymaną wcześniej przez innych badaczy tego układu. Chłodny składnik to olbrzym typu M5 (Mürset and Schmid, 1999). Optyczne widmo zdominowane jest przez czerwone kontinuum z silnymi pasmami TiO (rysunek 3.6) charakterystycznymi dla późnych gwiazd typu M. Masa tej gwiazdy szacowana jest na $3.7M_{\odot}$, a dystans do niej (wyliczony z absorpcyjnych linii międzygwiazdowych) to około 3 kpc (Dumm et al., 1998). W blasku olbrzyma występują małe nieregularności podobne do tych w gwiazdach symbiotycznych typu S. Obserwacje w podczerwieni dają niemal stałe kolory J - H i H - K. Najprawdopodobniej chłodny składnik nie jest więc zmienną typu mira, co jest w zgodności z przynależością do gwiazd symbiotycznych typu S.

Widma IUE (od ang. International Ultraviolet Explorer) uwidaczniają cechy absorpcji i kontinuum charakterystyczne dla gorącego składnika typu późnego A lub wczesnego F (Michalitsianos et al., 1982). Dumm et al. (1998) zauważyli w widmach w przedziale od zakresu niebieskiego do 6000Å dowody na obecność gorącego składnika. Określili stosunek mas $M_{cool}/M_{hot} =$ $6.7 \pm 1.3 M_{\odot}$ i sugerują, że gorący składnik to biały karzeł o masie $0.55 M_{\odot}$. O niezwykłości BX Mon jako układu symbiotycznego decyduje fakt, że gorący składnik jest stosunkowo chłodny i obserwowany w niebieskim zakresie widma. Widmo jest stabilne w podczerwieni, podczas gdy silnie zmienia się w barwach U - V. Zmienności te przypisuje się wahaniom blasku białego karła i geometrycznym efektom orbitalnym, jak okresowe zaćmienia (Iijima, 1985). Stąd wniosek, że zmiany jasności powodowane są przez periodyczne wahania tempa akrecji wynikłe z eliptyczności orbity, zaś zmiany blasku około fotometrycznego minimum pochodzą od przesłaniania gorącego składnika przez olbrzyma.

Rysunek 3.6 przedstawia przykładowy rozkład energii układu BX Mon

z nocy 09.01.2006. Na rysunku 3.7 widnieje rozkład energii pochodzący z katalogu Munariego i Zwittera (2002).

Rysunek 3.6: Przykładowy rozkład energii dla układu BX Mon z nocy 09.01.2006.

Rysunek 3.7: Rozkład energii dla układu BX Mon z katalogu Munariego i Zwittera (2002) z nocy 10.03.1995. Jednostka strumienia energii taka jak na rysunku 3.6.

3.2.4 CI Cyg

CI Cyg to symbiotyczny układ podwójny zawierający olbrzyma typu M5 o klasie jasności II i masie ~ $1.5M_{\odot}$ jako składnik główny i być może gwiazdę ciągu głównego o masie ~ $0.5M_{\odot}$ otoczoną przez duży dysk akrecyjny (Kenyon et al., 1991).

Zmienność fotometryczna została odkryta w 1937 roku (Greenstein, 1937). Obserwacje wizualne i fotograficzne pozwoliły wyliczyć okres o wartości 855.25 dnia (Aller, 1954). Długość okresu oraz występowanie zaćmień zostało potwierdzone kilkanaście lat później (Belyakina, 1979, 1984). Zachowanie się wskaźników barwy B - V oraz U - B wskazuje na to, że minimum główne jest wynikiem zakrycia składnika wtórnego przez olbrzyma. Nachylenie orbity i wynosi $73^{\circ} \pm 6^{\circ}$.

W układzie występują powtarzające się cykliczne wybuchy. Cykl otwierany jest przez silniejszy wybuch ($\Delta V \sim 3^m$), po którym nastepują mniejsze ($\Delta V \sim 2^m$).

Chłodny składnik wypełnia swoją powierzchnię Roche'a. Nadwyżka promieniowania na 12 mikrometrach sugeruje obecność pyłowej otoczki wokółgwiazdowej (Kenyon et al., 1991).

Obserwacje kontinuum UV dostarczają silnych dowodów na to, że gorący składnik jest dyskiem akrecyjnym a nie zwartym źródłem gwiazdowym. Silne linie emisyjne UV i optyczne wskazują na istnienie rozległej zjonizowanej mgławicy otaczjącej go. Niektóe cechy widmowe znikają podczas zaćmienia głównego (H I, He II, N V), podczas gdy inne (O III, Ne V, Fe VII) pozostają niezmienione (Kenyon et al., 1991).

Rysunek 3.8 przedstawia przykładowy rozkład energii układu CI Cyg z nocy 17.08.2005. Na rysunku 3.9 widnieje rozkład energii pochodzący z katalogu Munariego i Zwittera (2002).

Rysunek 3.8: Przykładowy rozkład energii dla układu CI Cyg z nocy 17.08.2005.

Rysunek 3.9: Rozkład energii dla układu CI Cyg z katalogu Munariego i Zwittera (2002) z nocy 11.03.1995. Jednostka strumienia energii taka jak na rysunku 3.8.

3.2.5 NQ Gem

Gwiazda NQ Gem należy do grupy obiektów węglowych typu widmowego R8–9 (Keenan and Morgan, 1941) lub zgodnie z obowiązującą nomenklaturą C 6.2, która pokazuje niezwykłą aktywność spektroskopową. Złożone widmo wykonane w satelitarnym ultrafiolecie posiada cechy gwiazd symbiotycznych. Także wysoka zmienność kontinuum UV z silną emisją C IV i stosunek Si III do C III pozwala zaliczyć NQ Gem do tej grupy gwiazd (Keenan and Morgan, 1941). Obiekt został umieszczony w katalogu gwiazd podejrzanych o symbiotyczność Belczyńskiego (2000).

NQ Gem jest układem podwójnym z dyskiem akrecyjnym wokół składnika wtórnego (Johnson et al., 1988). Dysk jest karmiony przez zewnętrzną atmosferę i wiatr gwiazdy węglowej i może być odpowiedzialny za niebieskie kontinuum w widmie. Zakładając, że dysk świeci jak ciało doskonale czarne o temperaturze T = 20000K jego rozmiary przy minimum emisji powinny wynosić $\leq 0.03R_{\odot}$.

Wcześniej wyjaśniano ultrafioletowe widmo hipotezą, według której NQ Gem miała być młodą, szybko ewoluującą mgławicą planetarną (Querci et al., 1986).

Rysunek 3.10 przedstawia przykładowy rozkład energii układu NQ Gem z nocy 10.03.2007. Na rysunku 3.11 widnieje rozkład energii pochodzący z katalogu Munariego i Zwittera (2002).

Rysunek 3.10: Przykładowy rozkład energii dla układu NQ Gem z nocy 10.03.2007.

Rysunek 3.11: Rozkład energii dla układu NQ Gem z katalogu Munariego i Zwittera (2002)
z nocy 07.02.1996. Jednostka strumienia energii taka jak na rysunku 3.10.

3.2.6 RS Oph

Jest to symbiotyczna nowa powrotna, u której zaobserwowano dotychczas szeć wybuchów: 1898, 12.08.1933, 14.07.1958, 27.10.1967, 28.01.1985 (Rosino and Iijima, 1987) oraz 12/13.02.2006. Odstępy między wybuchami są względnie krótkie ~ 10 – 20 lat. Chłodnym składnikiem jest czerwony olbrzym typu K7 (Mürset and Schmid, 1999) niewypełniający swojej strefy Roche'a i tracący masę przez intensywny wiatr gwiazdowy (Dobrzycka et al., 1996a). Gorącym składnikiem jest biały karzeł z dyskiem akrecyjnym, którego moc promieniowania oszacowana z obserwacji w ultrafiolecie wynosi ~ $100L_{\odot}$ (Snijders, 1987).

Gwałtowny spadek blasku po wybuchu wskazuje na bardzo masywnego białego karła, bliskiego limitu masy Chandrasekhara, według Hachisu and Kato (2000) $-1.36M_{\odot}$. Szacowany przez nich szybki przyrost masy białego karła (ok. $1.2 \cdot 10^{-8} M_{\odot}/\text{rok}$) czyni z RS Oph kandydata na supernową typu Ia.

Dystans do układu jest raczej niewielki i wynosi około 0.6 kpc. Za to dosyć długi jest okres ruchu orbitalnego wynoszący 455.7 dnia (Fekel et al., 2000).

Rysunek 3.12 przedstawia przykładowy rozkład energii układu RS Oph z nocy 15.09.2006 (kila miesięcy po wybuchu). Na rysunku 3.13 widnieje rozkład energii pochodzący z katalogu Munariego i Zwittera (2002).

Rysunek 3.12: Przykładowy rozkład energii dla układu RS Oph z nocy 15.09.2006 (kilka miesięcy po wybuchu).

Rysunek 3.13: Rozkład energii dla układu RS Oph z katalogu Munariego i Zwittera (2002) z nocy 29.05.1996. Jednostka strumienia energii taka jak na rysunku 3.12.

3.2.7 T CrB

Gwiazda ta należy do grupy gwiazd nowych powrotnych, zaliczana jest również do gwiazd symbiotycznych. Układ łączy olbrzyma typu widmowego M4.5 (Belczyński et al., 2000) z białym karłem o masie w przedziale $1.2 - 1.4M_{\odot}$ (Belczynski and Mikolajewska, 1998). W połowie XX wieku zagadnienie masy białego karłabudziło dużo kontrowersji, gdyż wiele wskazywało na to, że przekracza ona granicę Chandrasekhara (Kraft, 1958; Kenyon and Garcia, 1986). Jednak nowe obliczenia wykazały, że tak nie jest (Belczynski and Mikolajewska, 1998).

Czerwony olbrzym wypełnia swoją strefę Roche'a, a zatem ma niesferyczną powierzchnię i jasność powierzchniowa jest niejednorodna. Z tego powodu w krzywej blasku obserwuje się składową sinusoidalną o okresie równym okresowi orbitalnemu (227.6 dnia)–tzw. zmienność elipsoidalną.

W latach 1866 i 1946 obserwowano wybuchy, podczas których gwiazda pojaśniała o 9^m . Wybuchy miały podobny przebieg (Kraft, 1958). Poza tym w układzie obserwuje się stany wysokiej i niskiej aktywności (Zamanov et al., 2004), zktóymi związany jest flikering (Stanishev et al., 2004), występujący przede wszystkim w fazie aktywnej, osiągając największą amplitudę w barwie U: około 0.1–0.5 magnitudo. Obecność flikeringu nie ma związku z ruchem orbitalnym układu. Ponieważ obserwuje się go w bardziej energetycznym przedziale widma–flikering łączy się z aktywnością białego karła (Sokoloski et al., 2001; Bruch, 1980; Zamanov et al., 2004; Ianna, 1964; Lawrence et al., 1967; Bianchini and Middleditch, 1976). W barwach B i V amplituda flikeringu jest znacznie słabsza, a w okresach niskiej aktywności zdarza się, że flickering nie jest obserwowany (Bianchini and Middleditch, 1976; Dobrzycka et al., 1996b; Mikolajewski et al., 1997; Oskanian, 1983).

Rysunek 3.14 przedstawia przykładowy rozkład energii układu T CrB z nocy 31.03.2005. Na rysunku 3.15 widnieje rozkład energii pochodzący z katalogu Munariego i Zwittera (2002).

Rysunek 3.14: Przykładowy rozkład energii dla układu T ${\rm CrB}$ z nocy 31.03.2005.

Rysunek 3.15: Rozkład energii dla układu T $\rm CrB$ z katalogu Munariego i Zwittera (2002) z nocy 30.05.1996. Jednostka strumienia energii taka jak na rysunku 3.14.

3.2.8 TX CVn

TX CVn jest gwiazdą zmienną symbiotyczną, u której zaobserwowano dotychczas cztery wybuchy o amplitudach 2–3 magnitudo i czasie trwania od kilku lat do kilku dziesięcioleci (Mumford, 1956; Mammano and Taffara, 1978). Widmo ewoluuje od typu K do wczesnego A lub późnego B w maksimum (Cowley, 1956; Chkhikvadze, 1970).

Dane z pomiarów prędkości radialnych w połączeniu z danymi spektroskopowymi sugerują, że wokół wspólnego środka masy krąży olbrzym K5 III (Kenyon and Fernandez-Castro, 1987) z gwiazdą ciągu głównego B9–A0 lub biały karzeł akreujący materię z olbrzyma (Kenyon and Webbink, 1984).

W scenariuszu z białym karłem układ mógł powstać z gwiazdy typu Algola o okresie krótszym niż obecny. TX CVn to układ olbrzyma K5 III z karłem typu B9 z otoczką pyłową o okresie orbitalnym 199 dni (Kenyon and Garcia, 1989).

Obserwacje dostarczają dowodów na ekscentryczność i nachylenie orbity, które wynoszą odpowiednio $e = 0.16 \pm 0.06$ oraz $20^{\circ} \le i \le 70^{\circ}$, a także masę białego karła $0.3M_{\odot} \le M_{WD} \le 0.55M_{\odot}$ (Kenyon and Garcia, 1989).

Rysunek 3.16 przedstawia przykładowy rozkład energii układu TX CVn z nocy 09.01.2006. Na rysunku 3.17 widnieje rozkład energii pochodzący z katalogu Munariego i Zwittera (2002).

Rysunek 3.16: Przykładowy rozkład energii dla układu TX CVn z nocy 09.01.2006.

Rysunek 3.17: Rozkład energii dla układu TX CVn z katalogu Munariego i Zwittera (2002) z nocy 10.03.1995. Jednostka strumienia energii taka jak na rysunku 3.16.

3.2.9 YY Her

YY Her jest systemem symbiotycznym, którego historia obserwacji sięga 1890 roku. W poprzednim stuleciu zarejestrowano cztery wybuchy w latach: 1914– 1919, 1930–1931, 1981–1982 i 1993–1996, gdy gwiazda jaśniała o 2–3 magnitudo oraz kilka epizodów ze słabymi pojaśnieniami (Munari et al., 1997). Układ jest położony w odległości 3.2 kpc i prawdopodobnie należy do populacji zgrubienie centralne / cienki dysk. W fazie spokojnej obserwowane są zmienności elipsoidalne o małej amplitudzie ($\Delta V = 0.3mag$) wskazujące na okres orbitalny 590 dni.

Herbig (1950) opisał szczegółowo po raz pierwszy widmo układu, który zaliczył do obiektów symbiotycznych. Obserwacje wykonano w fazie spokojnej i uwidoczniły one silne linie emisyjne nałożone na absorpcyjne kontinuum olbrzyma M2. Linie H I, He I, He II i O III z He II 4686Åtak jasną jak H_{β} sugerują, że składnik wtórny był bardzo gorący i jasny w czasie obserwacji Herbiga. Podobne cechy widma potwierdzili Blair et al. (1983).

Warunki bardzo wysokiej jonizacji w YY Her zostały potwierdzone przez widma dostarczone przez IUE (Michalitsianos et al., 1982), zdominowane przez ekstremalnie silne linie emisyjne N V 1240Åi HeII 1640Å.

Modelowanie kontinuum UV daje różne odpowiedzi na pytanie o naturę gorącego składnika. Używając tych samych danych otrzymano gwiazdę ciągu głownego akreującą z olbrzyma M2 (Kenyon and Webbink, 1984) oraz białego karła bez widocznego dysku akrecyjnego (Muerset et al., 1991a).

Obserwacje VLA (od ang. Very Large Array), brak detekcji przez IRASa (od ang. Infrared Astronomical Satellite) i rezultaty fotometrii JHK z Ziemi wskazują na brak znaczących ilości materii wokółgwiazdowej (Seaquist et al., 1984; Swings and Allen, 1972; Taranova and Yudin, 1982; Munari et al., 1992).

Rysunek 3.18 przedstawia przykładowy rozkład energii układu YY Her z nocy 24.08.2005. Na rysunku 3.19 widnieje rozkład energii pochodzący z katalogu Munariego i Zwittera (2002).

Rysunek 3.18: Przykładowy rozkład energii dla układu YY Her z nocy 24.08.2005.

Rysunek 3.19: Rozkład energii dla układu YY Her z katalogu Munariego i Zwittera (2002) z nocy 01.06.1996. Jednostka strumienia energii taka jak na rysunku 3.18.

3.2.10 Z And

Gwiazda ta jest protoplastą układów symbiotycznych. Przejawia zmiany jasności w zakresie optycznym na poziomie 0.2–0.5 magnitudo w fazie spokojnej i jaśnieje o 2–3 mag w czasie wybuchów (Formiggini and Leibowitz, 1994; Kenyon, 1986). Widmo w fazie spokojnej zawiera pasma absorpcyjne TiO i widoczne linie emisyjne H I, He II, Ne V, Fe VII (Merrill, 1944, 1948; Hogg, 1932); w wybuchu natomiast widać cechy absorpcyjne gwiazd typu A razem z emisyjnymi liniami mgławicowymi i pasmami absorpcyjnymi gwiazd M (Plaskett, 1923, 1927; Fernandez-Castro et al., 1988). W fazie spokojnej dają się zauważyć zmiany w kontinuum i liniach emisyjnych korelujące się z ruchem orbitalnym czerwonego olbrzyma (Garcia et al., 1983), którego okres wynosi 758.8 dnia (Mikolajewska and Kenyon, 1996).

Chłodnym składnikiem jest czerwony olbrzym typu M4.5 (Belczyński et al., 2000) o masie $2M_{\odot}$ (Mikolajewska and Kenyon, 1996), zaś gorącym-biały karzeł o masie $0.65 \pm 0.28 M_{\odot}$ określonej na podstawie inklinacji $i = 45^{\circ} \pm 12^{\circ}$ otrzymanej z pomiarów polarymetrycznych (Schmid and Schild, 1997). Karzeł otoczony jest przez gęstą zjonizowaną mgławicę, a niewielkie zmiany tempa akrecji powodują sporadyczne wybuchy o amplitudzie 2–3 mag (Mikolajewska and Kenyon, 1992). Sokoloski and Bildsten (1999) zgłosili odkrycie oscylacji w trakcie wybuchu o okresie 28 min. i amplitudzie 0.002 do 0.005 mag skorelowanej z optyczną jasnością układu. Okres ten utożsamiają z okresem rotacji białego karła.

Rysunek 3.20 przedstawia przykładowy rozkład energii układu Z And z nocy 06.11.2002. Na rysunku 3.21 widnieje rozkład energii pochodzący z katalogu Munariego i Zwittera (2002).

Rysunek 3.20: Przykładowy rozkład energii dla układu Z And z nocy 06.11.2002.

Rysunek 3.21: Rozkład energii dla układu Z And z katalogu Munariego i Zwittera (2002) z nocy 15.10.1995. Jednostka strumienia energii taka jak na rysunku 3.20.

3.2.11 ZZ CMi

ZZ CMi to gwiazda podejrzana o symbiotyczność (Belczyński et al., 2000). Pierwsze szczegółowe obserwacje spektroskopowe wykonał Sanford (1947) obserwując pasma absorpcyjne TiO, silne absorpcje Ca I i linie emisyjne H_{α}, H_{β} , O III 6300Åi Fe II. Z uwagi na brak wysoko wzbudzonych linii emisyjnych Sanford nie zaliczył tej gwiazdy do symbiotycznych.

Iijima (1984) zaobserwował w widmach ślad linii O III i Ne III i uznał, że ZZ CMi może być–zgodnie z kryteriami Boyarchuka (Boyarchuk, 1975)– sklasyfikowana jako symbiotyczna. Także Bopp (1984) klasyfikował ten układ jako symbiotyczny.

Belczyński et al. (2000) nie zgadzają się z taką klasyfikacją ze względu na:

- zbyt niebieskie kolory w minimum (Zamanov and Tomov, 1992) i krzywą blasku bardziej podobną do gwiazd pulsujących,
- uważają, że widmo prezentowane przez Iijimę (1984) nie jest widmem gwiazdy symbiotycznej $(H_{\gamma} \leq H_{\beta})$ i jest zaszumione (Ne III może nie być obecna).

Z uwagi na połączenie widma gwiazdy późnego typu z widmem zawierającym linie emisyjne z profilem H_{α} podobnym do występujących u gwiazd symbiotycznych, układ został zaliczony do grupy podejrzewanych o symbiotyczność.

Rysunek 3.22 przedstawia przykładowy rozkład energii układu ZZ CMi z nocy 21.09.2005. Na rysunku 3.23 widnieje rozkład energii pochodzący z katalogu Munariego i Zwittera (2002).

Rysunek 3.22: Przykładowy rozkład energii dla układu ZZ CMi z nocy 21.09.2005.

Rysunek 3.23: Rozkład energii dla układu ZZ CM
i z katalogu Munariego i Zwittera (2002) z nocy 10.03.1995. Jednostka strumienia energii taka jak na rysunku 3.22.

3.2.12 MWC 560

MWC 560 oraz inny osobliwy układ symbiotyczny, CH Cyg, zostały zakwalifikowane do nowej klasy gwiazd symbiotycznych charakteryzujących się akrecją magnetycznego białego akrła będącego źródłem aktywności (Frackowiak et al., 2002). Towarzysz gorącego składnika powinien ujawniać obecność wiatru gwiazdowego ze względnie dużą utratą masy. Oczekuje się raczej gwiazdy w późnym stadium AGB (od ang. *Asymptotic Giant Branch*), Miry bądź półregularnej zmiennej (SR) niż zwykłego czerwonego olbrzyma. Badania przeprowadzone w pasmie I pokazują, że olbrzym typu M należy do któregoś z powyższych rodzajó gwiazd ewolucyjnie zaawansowanych i wykazuję pulsację o okresie pięciu miesięcy.

Widma absorpcyjnych linii wodorowych Balmera wskazują na prędkości radialne rzędu -6000 km/s. Spekuluje się, że układ MWC 560 może posiadać kompaktowy składnik wyrzucający materię w postaci jetów wzdłuż linii obserwacji (Tomov et al., 1990).

Rysunek 3.24 przedstawia przykładowy rozkład energii układu MWC 560 z nocy 31.03.2005.

Rysunek 3.24: Przykładowy rozkład energii dla układu MWC 560 z nocy 31.03.2005.

3.2.13 V934 Her

Gwiazda V934 Her została zidentyfikowana ze źródłem rentgenowskim 2A 1704+241 obserwowanym przez satelitę Ariel V w 1983 roku (Garcia et al., 1983). Podejrzewa się ją o symbiotyczność (Belczyński et al., 2000).

Układ zawiera olbrzyma typu M. W widmie optycznym brakuje linii emisyjnych od gorącego składnika. W widmach uzyskanych przez IUE SWP brak też wykrywalnego kontinuum. W zakresie X występują znaczne zmienności w skalach czasowych–od minut do lat. W fotometrii optycznej i podczerwonej zmiennść jest nieznaczna (Garcia et al., 1983).

Obserwowane cechy wykluczają obecność białego karła jako towarzysza dla olbrzyma, chociaż gwiazda neutronowa jest wciąż możliwa.

W roku 1997 nastąpił wybuch rentgenowski. Podczas pierwszych dwóch tygodni listopada 1997 strumień przy 2–10 eV osiągnął maksimum o jasności ok. 35 razy większej od pulsara w Krabie.

Rysunek 3.25 przedstawia przykładowy rozkład energii układu V
934 Her $\rm z$ nocy 30.03.2005.

Rysunek 3.25: Przykładowy rozkład energii dla układu V934 Her z nocy 30.03.2005.

Rozdział 4

Typy widmowe gwiazd symbiotycznych

W tabeli 5.1 przedstawiam wyniki pomiarów strumieni w pasmach tlenku tytanu dla wybranych na potrzeby tej pracy dziewięciu układów symbiotycznych. Wszystkie wartości strumieni energii wyrażone są w $10^{-11} \cdot erg \cdot cm^{-2} \cdot s^{-1}$. Kolumna szósta zawiera literaturowy podtyp widmowy typu M zaczerpnięty z pracy Belczyńskiego (Belczyński et al., 2000). Wartości widniejące w kolumnie siódmej zostały uzyskane przez skorzystanie z zależności podtypu widmowego od stosunku absorpcji do emisji w danym pasmie TiO (*rysunek 2.9*), tj.:

$$spM = -0.7(x)^2 + 7(x) - 2.2$$
 (4.1)

gdzie $x = \frac{A_{\lambda}^{TiO}}{E_{\lambda}^{TiO}}$

Wzór (5.1) powstał przez dopasowanie wielomianu drugiego rzędu do rozkładu standardów spektrofotomotrycznych klas jasności I, II i III oraz zmiennych typu mira w zależności od temperatury powierzchniowej gwiazdy. Argument $\frac{A_{\lambda}^{TiO}}{E_{\lambda}^{TiO}}$ oznacza sumę wartości strumieni energii z "absorpcyjnych" zakresów pasm TiO 5168Å, TiO 4955Å oraz TiO 4762Å, podzieloną przez sumę wartości strumieni z "emisyjnych" zakresów tych pasm (patrz rysunek 2.1).

			10	abiica 4.1.	wartosc	strumen	n w mierz	onych po	A_{λ} , E_{λ} powstatych w	wyniku absorpcji 110.
Tabela zawiera dane dla opracowanych przeze mnie widm gwiazd symbiotycznych. Strumienie są wyrażone w $10^{-11} \cdot erg \cdot cm$										
	gwiazda	data TiO 5168		TiO 4955		TiO 4762		Typ widmowy	Typ widmowy	
		obserwacji	A_{λ}^{TiO}	E_{λ}^{TiO}	A_{λ}^{TiO}	E_{λ}^{TiO}	A_{λ}^{TiO}	E_{λ}^{TiO}	(Belczyński et al., 2000)	uzyskany w tej pracy
	AG Peg	2003.09.06	5.85	8.37	5.67	4.73	2.48	3.97	M 3.0	M 3.07
	AG Peg	2004.01.05	4.70	7.78	4.78	4.30	2.52	3.49	M 3.0	M 2.80
	AX Per	2005.08.17	0.81	0.62	0.73	0.46	0.45	0.33	M 6.0	M 6.23
	AX Per	2005.10.19	2.46	2.16	2.03	1.45	1.27	1.01	M 6.0	M 5.50
	BX Mon	2005.10.23	3.14	2.48	5.17	4.01	6.78	6.11	M 5.0	M 4.75
	BX Mon	2006.01.09	2.94	2.39	4.57	3.79	5.49	5.13	M 5.0	M 4.93
	-		-							
	CI Cvg	2005.08.17	1.15	1.07	1.12	0.68	0.65	0.56	M 5.5	M 5.51
	CI Cyg	2005.08.19	1.24	1.10	1.13	0.69	0.57	0.46	M 5.5	M 5.71
						0.00		0.00		
	T CrB	2002.02.14	0.82	0.63	1.12	0.93	1.20	1.51	M 4.5	M 4.14
	T CrB	2002.04.21	0.37	0.35	0.53	0.49	0.45	0.31	M 4.5	M 4.54
	T CrB	2003.02.23	0.49	0.41	0.68	0.60	0.78	0.98	M 4.5	M 4.01
	T CrB	2003.04.23	0.11	0.10	0.16	0.14	0.21	0.23	M 4.5	M 4.10
	T CrB	2004.04.28	0.29	0.27	0.46	0.41	0.54	0.66	M 4.5	M 4.04
	T CrB	2004.05.14	0.45	0.36	0.62	0.54	0.65	0.86	M 4.5	M 4.01
	T CrB	2005.02.06	1.64	1.37	2.42	2.03	2.64	3.02	M 4.5	M 4.32
ļ	T CrB	2005 03 31	3.62	4 66	3 46	$\frac{2.00}{2.78}$	2.51	2.18	M 4 5	M 4 10
	T CrB	2005.05.01	3.30	4 15	3.24	2.10 2.56	2.01 2.34	1.10	M 4.5	M 4 30
	T CrB	2005.04.15	0.00 0.10	1.10	2.024	2.00 2.45	2.04	4.16	M 4.5	M 4 15
	I UID	2005.06.20	$_{2.12}$	1.00	2.95	$_{2.40}$	0.24	4.10	IVI 4.0	IVI 4.10

Tablica 4.1: Wartości strumieni w mierzonych poląch $A^{TiO} = F^{TiO}$ powstałych w wymiku absorpcji TiO $\cdot s^{-1}$.

	Tablica 4.2: Ciąg dalszy tabeli 5.1.									
gwiazda	data	TiO 5168 TiO		4955 Ti		4762	Typ widmowy	Typ widmowy		
	obserwacji	A_{λ}^{TiO}	E_{λ}^{TiO}	A_{λ}^{TiO}	E_{λ}^{TiO}	A_{λ}^{TiO}	E_{λ}^{TiO}	(Belczyński et al., 2000)	uzyskany w tej pracy	
V934 Her	2005.02.06	7.91	8.05	12.4	11.0	11.3	22.0	M 3.0	M 2.84	
V934 Her	2005.03.22	5.75	6.30	8.84	8.24	7.88	14.3	M 3.0	M 2.97	
V934 Her	2005.03.30	14.9	31.9	18.1	17.3	12.7	13.3	M 3.0	M 2.60	
V934 Her	2005.04.26	4.52	4.70	6.69	6.59	6.26	12.7	M 3.0	M 2.60	
									l ·	
YY Her	2005.08.18	0.27	0.41	0.28	0.24	0.19	0.18	M 4.0	M 3.61	
YY Her	2005.08.24	0.21	0.31	0.21	0.19	0.17	0.15	M 4.0	M 3.63	
									l ·	
ZZ CMi	2001.01.22	2.19	1.51	3.77	2.44	4.65	3.49	M 6.0	M 6.32	
ZZ CMi	2001.02.27	4.05	2.73	6.48	4.16	7.06	5.24	M 6.0	M 6.47	
ZZ CMi	2003.02.23	0.91	0.62	1.55	1.07	2.04	1.32	M 6.0	M 6.60	
ZZ CMi	2003.09.21	1.89	1.30	3.08	2.15	3.68	2.61	M 6.0	M 5.60	
ZZ CMi	2004.03.15	0.53	0.37	0.92	0.66	1.16	0.86	M 6.0	M 6.12	
ZZ CMi	2005.02.08	1.96	1.38	3.36	2.23	4.06	2.80	M 6.0	M 6.52	
ZZ CMi	2005.08.02	17.2	12.8	14.0	9.65	8.72	6.11	M 6.0	M 6.17	
ZZ CMi	2005.09.21	18.3	13.7	14.7	9.73	9.01	6.17	M 6.0	M 6.27	
ZZ CMi	2006.01.10	0.64	0.51	1.12	0.76	1.37	0.97	M 6.0	M 6.23	
ZZ CMi	2006.01.11	0.88	0.61	1.43	0.99	1.73	1.37	M 6.0	M 6.03	
Z And	2002.11.06	1.95	2.10	1.68	1.23	0.91	1.07	M 4.5	M 4.16	
Z And	2006.01.10	1.35	1.89	1.56	1.52	0.93	1.54	M 4.5	M 4.32	

Rozdział 5

Ekstrakcja widma gorącego składnika

5.1 Widma olbrzymów typu M

Widmo gwiazd symbiotycznych jest widmem złożonym, składającym się z widma gorącego składnika, widma chłodnego olbrzyma oraz linii świadczących o obecności mgławicy. Widmo samego olbrzyma można uzyskać stosując widma uśrednionych standardów odpowiedniego typu i odpowiednio poczerwienionych. Dysponując widmem gwiazdy standardowej można otrzymać widmo samego olbrzyma dzięki zależnoci:

$$spM_{cool} = C \cdot spM_{std} \tag{5.1}$$

gdzie czynnik $C = \frac{(A_{\lambda}^{TiO} + E_{\lambda}^{TiO})_{symb}}{(A_{\lambda}^{TiO} + E_{\lambda}^{TiO})_{std}}$

W miejsce A_{λ}^{TiO} oraz E_{λ}^{TiO} podstawiałem zsumowane wartości strumieni energii z pasm TiO 4762Åoraz TiO 4955Å. Na rysunkach 6.1–6.8 przedstawiam widma chłodnych składników układów symbiotyczncyh zawartych w tabeli 5.1 i tabeli 5.2 uzyskane po zastosowaniu zależności (6.1). Rozkłady energii olbrzymów były uzyskiwane dla E(B - V) = 0 lub E(B - V) = 0.3 i rozkładu energii uśrednionych standardów spektrofotometrycznych o średnim typie najbliższym rozpatrywanemu olbrzymowi z układu symbiotycznego (tabela 2.9 i 2.10, czwarta kolumna).

Rysunek 5.1: Rozkład energii dla chłodnego składnika układu AG Peg, uzyskany przez przemnożenie uśrednionego standardu typu M 3.13 przez czynnik C=0.008 przy E(B-V) = 0.

Rysunek 5.2: Rozkład energii dla chłodnego składnika układu AX Per, uzyskany przez przemnożenie uśrednionego standardu typu M 6.24 przez czynnik C=0.0004 przy E(B-V) = 0.

Rysunek 5.3: Rozkład energii dla chłodnego składnika układu CI Cyg, uzyskany przez przemnożenie uśrednionego standardu typu M 5.35 przez czynnik C=0.0005 przy E(B-V) = 0.

Rysunek 5.4: Rozkład energii dla chłodnego składnika układu T CrB, uzyskany przez przemnożenie uśrednionego standardu typu M 4.35 przez czynnik C=0.0009 przy E(B-V) = 0.3

Rysunek 5.5: Rozkład energii dla chłodnego składnika układu V934 Her, uzyskany przez przemnożenie uśrednionego standardu typu M 3.13 przez czynnik C=0.02 przy E(B-V) = 0.

Rysunek 5.6: Rozkład energii dla chłodnego składnika układu YY Her, uzyskany przez przemnożenie uśrednionego standardu typu M 4.35 przez czynnik C=0.0002 przy E(B - V) = 0.

Rysunek 5.7: Rozkład energii dla chłodnego składnika układu Z And, uzyskany przez przemnożenie uśrednionego standardu typu M 4.35 przez czynnik C=0.001 przyE(B-V)=0

Rysunek 5.8: Rozkład energii dla chłodnego składnika układu ZZ CM
i, uzyskany przez przemnożenie uśrednionego standardu typu M 6.24 przez czynnik
 C=0.004 przyE(B-V)=0.3

5.2 Widmo gorącego składnika

Uzyskując obraz widma chodnego składnika układ symbiotycznego ze wzoru (6.1) można dokonać próby ekstrakcji widma jego gorącego komponentu korzystając z zależności:

$$sp_{hot} = sp_{symb} - spM_{cool} \tag{5.2}$$

Na rysunkach 6.9–6.16 przedstawiam widma wyekstrahowanego gorącego komponentu dla układów symbiotycznych z *tabeli 5.1* i *tabeli 5.2* wraz z wykresem porównawczym, zawierającym rozkłady energii widma symbiotycznego, chłodnego i gorącego składnika razem.

Rysunek 5.9: Rozkład energii dla samego gorącego składnika układu AG Peg (wykres na poprzedniej stronie), jak i wykres zawierający rozkłady energii widma symbiotycznego oraz chłodnego i gorącego składnika razem (powyżej). Widma układu pochodzą z nocy 06.09.2003. E(B - V) = 0 dla wszystkich wykresów.

Rysunek 5.10: Rozkład energii dla samego gorącego składnika układu AX Per (wykres górny), jak i wykres zawierający rozkłady energii widma symbiotycznego oraz chłodnego i gorącego składnika razem (wykres dolny). Widma układu pochodzą z nocy 17.08.2005. E(B-V) = 0 dla wszystkich wykresów.

Rysunek 5.11: Rozkład energii dla samego gorącego składnika układu CI Cyg (wykres górny), jak i wykres zawierający rozkłady energii widma symbiotycznego oraz chłodnego i gorącego składnika razem (wykres dolny). Widma układu pochodzą z nocy 17.08.2005. E(B-V) = 0 dla wszystkich wykresów.

Rysunek 5.12: Rozkład energii dla samego gorącego składnika układu T CrB (wykres górny), jak i wykres zawierający rozkłady energii widma symbiotycznego oraz chłodnego i gorącego składnika razem (wykres dolny). Widma układu pochodzą z nocy 31.03.2005. E(B-V) = 0.3 dla wszystkich wykresów.

Rysunek 5.13: Rozkład energii dla samego gorącego składnika układu V934 Her (wykres górny), jak i wykres zawierający rozkłady energii widma symbiotycznego oraz chłodnego i gorącego składnika razem (wykres dolny). Widma układu pochodzą z nocy 30.03.2005. E(B - V) = 0 dla wszystkich wykresów.

Rysunek 5.14: Rozkład energii dla samego gorącego składnika układu YY Her (wykres górny), jak i wykres zawierający rozkłady energii widma symbiotycznego oraz chłodnego i gorącego składnika razem (wykres dolny). Widma układu pochodzą z nocy 24.08.2005. E(B-V) = 0 dla wszystkich wykresów.

Rysunek 5.15: Rozkład energii dla samego gorącego składnika układu Z And (wykres górny), jak i wykres zawierający rozkłady energii widma symbiotycznego oraz chłodnego i gorącego składnika razem (wykres dolny). Widma układu pochodzą z nocy 06.11.2002. E(B - V) = 0 dla wszystkich wykresów.

Rysunek 5.16: Rozkład energii dla samego gorącego składnika układu ZZ CMi (wykres górny), jak i wykres zawierający rozkłady energii widma symbiotycznego oraz chłodnego i gorącego składnika razem (wykres dolny). Widma układu pochodzą z nocy 21.09.2005. E(B - V) = 0.3 dla wszystkich wykresów.

Widma gorących składników większości układów symbiotycznych rozpatrywanych w tej pracy (tj. AG Peg, AX Per, CI Cyg, YY Her oraz Z And) ukazują dominacje gazu mgławicowego. Gorący składnik, będący często białym karłem, jonizuje materię z wiatru od czerwonego olbrzyma. Widmo zjonizowanej mgławicy zawiera silne linie emisyjne, co widać na przykładach układów wymienionych powyżej. W przypadku wielu gwiazd symbiotycznych, wysoce wzbudzona materia mgławicowa zawiera silne linie kilkukrotnie zjonizowanych pierwiastków, takich jak O VI, O V, N V, [Ne V], [Mg V], a także [Fe VII]. Szacowana temperatura gorącego składnika w takich układach (przy założeniu, że wysyła promieniowanie jak ciało doskonale czarne) wynosi około T = 100000K (Muerset et al., 1991b). Podane linie widać na niektórych widmach, które przedstawiłem w tym rozdziale.

Widmo gorących składników układów T CrB, V934 Her oraz ZZ CMi nie ukazuje dominacji gazu mgławicowego (choć w przypadku T CrB, gdzie olbrzym wypełnia swoją strefę Roche'a, widoczne są linie emisyjne, które mogą o tym świadczyć). W układzie V934 Her wykluczono obecność białego karła jako towarzysza chłodnego składnika. Podejrzewa się obecność gwiazdy neutronowej. W widmie tego układu brakuje linii emisyjnych od gorącego składnika. W przypadku ZZ CMi brak linii emisyjnych w widmie gorąceg składnika może być wynikiem błędu popełnionego przy jego ekstrahowaniu. Z drugiej jednak strony operacja taka jest pionierską dla toruńskiego ośrodka i uzyskanie jednoznacznych konkluzji może być niemożliwe. W związku z powyższymi wątpliwościami w Suplemencie 1. przedstawiam rozkłady energii wyekstrahowanych gorących składników układów T CrB, V934 Her oraz ZZ CMi z wszystkich nocy, kiedy były obserwowane w zakresie 3500–5500Åi przy użyciu siatki dyfrakcyjnej 600 rys/mm.

5.3 Podsumowanie

Celem tej pracy było sprawdzenie działania metody wyznaczania podtypu widmowego gwiazd typu M poprzez badanie stosunków strumieni energii w pasmach tleknu tytanu (patrz rysunek 2.2, rozdział 2.). Za materiał badawczy posłużyły układy zawarte w tabelach 5.1 i 5.2. Dzięki dopasowaniu wielomianu do standardów spektrofotometrycznych typu M udało się znaleźć zależność (5.1) umożliwiającą precyzyjne określenie podtypu widmowego, a w dalszej kolejności ściśle związanej z nim temperatury powierzchniowej. Metoda okazała się bardzo czuła na zmienności olbrzymów w wybrancyh na potrzeby tej pracy układach symbiotycznych i w porównaniu z danymi literaturowymi wartości otrzymane przeze mnie nie różnią się więcej niż 10% od danych katalogu gwiazd symbiotycznych Belczyńskiego (2000).

Drugim zasadniczym celem mojej pracy była próba wyekstrahowania widma gorącego składnika wybranych przeze mnie układów symbiotycznych. Zadanie to było pionierskim dla ośrodka w Piwnicach, trudno zatem oceniać jego wartość naukową. Widać jednak doskonale różnice w widmach każdego ze składników układu symbiotycznego jak również zmienność na przestrzeni lat gorących komponentów trzech wybranych układów: T CrB, V934 Her oraz ZZ CMi. Dzięki temu niniejsza praca może posłużyć w kolejnych latach jako wzorzec do porównywania i weryfikowania wyników otrzymanych przez innych badaczy.

Rozdział 6

Suplement 1

Zestawienie widm gorących składników dla T CrB, V934 Her oraz ZZ CMi z obserwacji w latach 2001–2006.

6.1 T CrB

Na rysunkach 6.17–6.25 przedstawiam wyekstrahowane widma gorącego składnika układu symbiotycznego T CrB z obserwacji w latach 2001–2006.

Rysunek 6.1: Widmo gorącego składnika T ${\rm CrB}$ pochodzące z nocy 14.02.2002.

Rysunek 6.2: Widmo gorącego składnika T ${\rm CrB}$ pochodzące z nocy 21.04.2002.

Rysunek 6.3: Widmo gorącego składnika T CrB pochodzące z nocy 23.02.2003.

Rysunek 6.4: Widmo gorącego składnika T CrB pochodzące z nocy 23.04.2003.

Rysunek 6.5: Widmo gorącego składnika T CrB pochodzące z nocy 28.04.2004.

Rysunek 6.6: Widmo gorącego składnika T ${\rm CrB}$ pochodzące z nocy 14.05.2004.

Rysunek 6.7: Widmo gorącego składnika T CrB pochodzące z nocy 06.02.2005.

Rysunek 6.8: Widmo gorącego składnika T ${\rm CrB}$ pochodzące z nocy 31.03.2005.

Rysunek 6.9: Widmo gorącego składnika T CrB pochodzące z nocy 20.08.2005.

6.2 V934 Her

Na rysunkach 6.26–6.29 przedstawiam wyekstrahowane widma gorącego składnika układu symbiotycznego V934 Her z obserwacji w latach 2001–2006 (obserwacje w zakresie 3500 – 5500Å wykonywano jedynie w roku 2005).

Rysunek 6.10: Widmo gorącego składnika V934 Her pochodzące z nocy 06.02.2005.

Rysunek 6.11: Widmo gorącego składnika V934 Her pochodzące z nocy 22.03.2005.

Rysunek 6.12: Widmo gorącego składnika V934 Her pochodzące z nocy 30.03.2005.

Rysunek 6.13: Widmo gorącego składnika V934 Her pochodzące z nocy 26.04.2005.

6.3 ZZ CMi

Na rysunkach 6.30–6.39 przedstawiam wyekstrahowane widma gorącego składnika układu symbiotycznego ZZ CMi z obserwacji w latach 2001–2006.

Rysunek 6.14: Widmo gorącego składnika ZZ CMi pochodzące z nocy 22.01.2001.

Rysunek 6.15: Widmo gorącego składnika ZZ CM
i pochodzące z nocy 27.02.2001.

Rysunek 6.16: Widmo gorącego składnika ZZ CMi pochodzące z nocy 23.02.2003.

Rysunek 6.17: Widmo gorącego składnika ZZ CM
i pochodzące z nocy 21.09.2003.

Rysunek 6.18: Widmo gorącego składnika ZZ CMi pochodzące z nocy 15.03.2004.

Rysunek 6.19: Widmo gorącego składnika ZZ CM
i pochodzące z nocy08.02.2005.

Rysunek 6.20: Widmo gorącego składnika ZZ CMi pochodzące z nocy 21.09.2005.

Rysunek 6.21: Widmo gorącego składnika ZZ CM
i pochodzące z nocy 10.01.2006.

Rysunek 6.22: Widmo gorącego składnika ZZ CMi pochodzące z nocy 11.01.2006.

Rozdział 7

Suplement 2

Spis obserwacji gwiazd symbiotycznych z lat 2000–2006

7.1 AG Dra

Data	Numer widma	Numer widma	Standard	Numer widma
obserwacji		porównania		porównania standardu
2000.09.24	$284,\!285,\!286$	287	Vega-289,290	288
2001.10.24	1601, 1602, 1603	1604	$\eta UMa - 1605, 1606$	1607
2002.10.02	4328,4329,4330,	4332		
	$4331,\!4333,\!4334$			
2002.10.10	4381,4382	4383		
2002.10.11	4398,4399	4400		
2002.10.19	4408,4409,4410	4411,4412		
2002.10.29	4527,4528,4530	4529		
2003.06.27	7884,7886,7887	7885,7888	$\begin{array}{c} \mathrm{HR6025}{-}7889, \\ 7890, 7891 \end{array}$	7892
2003.06.28	7902,7903	7904	7905,7906	7909
	,		7907,7908	
2003.07.03	7910,7911,7912	7913	7914,7915,	
			7916,7917	
2003.07.24	8134,8135,8136	8137	8138,8139,8140	8141
2003.07.30	8418,8419,8426	8420,8427	15 Dra–8421,	8425
			8422,8423,8424	
2003.09.04	8447,8448	8449		
2003.09.05	8454,8455,8456	8457	8458,8459,8460	8461
2003.09.17	8676,8677	8678	8679,8680,	8683
			$8681,\!8682$	
2003.10.03	9006,9007,9008	9009		
2003.10.05	9010,9011	9012		
2003.10.08	9013,9014	9015		
2003.10.09	9016,9017	9020	9021,9022	9025
	$9018,\!9019$		$9023,\!9024$	
2003.10.10	$9032,\!9033,\!9039$	9034,9041,9043	$9035,\!9037,\!9038$	9036
	$9040,\!9042$			
2003.10.11	$9069,\!9070,\!9071$	9072		
2003.10.12	$9082,\!9083,\!9084$	$9085,\!9108$	$9086,\!9087,\!9088$	9089, 9102, 9105
	$9097,\!9098,\!9106$		9099, 9100, 9101	
	9107		9103,9104	
2003.10.24	$9596,\!9597$	9598,9607	9599,9600	$9601,\!9602$
	9605,9606		9602,9603	
2003.10.31	9733, 9735, 9736,	9734,9742,9743	9744,9745,9746	$9749,\!9750$
	9737, 9738, 9739,		$9747,\!9748$	
	9740,9741			
2003.11.03	9813,9814,9815	9816		
2003.11.18	$10014,10015,10023,\\10025,10026$	10016,10024,10027		
2003.11.19	10032	10033		
2003.11.21	$\frac{10034,10035,10036}{10037,10038}$	10039	$\frac{10040,10041,10042}{10043,10044}$	10045
2004.01.05	$\frac{10343,10344,10345}{10346},$	10347	$\frac{10348,10349,10350}{10351,10352}$	10353

Data	Numer widma	Numer widma	Standard	Numer widma
obserwacji		porównania		porównania standardu
2004.02.28	$10676, 10678, 10679, \\10680$	10677,10681	10682,10683,10684	10685
2003.11.23	$\frac{10056,10057}{10058,10060}$	10059,10061	10062,10063,10064	
2004.03.04	10686,10687,10688	10689	10690, 10691, 10692	10693
2004.03.05	10731,10732,10733	10734	10735, 10736, 10737	10738
2004.03.31	$11978, 11979, 11984, \\11985$	11980,11986	11981,11982	11983
2004.04.01	11987,11988,11989	11990	11991, 11992	11993
2004.04.15	12124,12125	12126	12127,12128,12129	12130
2004.04.25	12181,12182	12183	12184, 12185, 12186	12187
2005.01.31	$12485,12486,12499,\\12500$	12501	12487,12488,12489	12490
2005.02.08	12632,12633,12634	12635	$\frac{12636, 12637, 12638}{12639}$	12640
2005.03.19	12727,12728,12729	12726,12730	12732, 12733, 12734	12735
2005.03.31	$12961,\!12962,\!12963$	12964	12965, 12966, 12967	12968
2005.05.24	13396, 13397	13398	13399, 13400, 13401	13402
2005.05.29	13614,13615,13616	13617	13618, 13619, 13620	
2005.07.25	$14001, 14002, 14003, \\14004$	14005	14006,14007,14008	14009
2005.07.27	$\begin{array}{c} 14014, 14015, 14016, \\ 14017, 14018, 14019 \end{array}$	14020,14021	$\frac{14022,\!14023,\!14024}{14025,\!14026}$	14027
2005.09.18	$\begin{array}{r} 14051, 14052, 14053, \\ 14054 \end{array}$	14055	14056,14057,14058	14059
2005.09.22	$\begin{array}{c} 14116, 14117, 14118,\\ 14127, 14128, 14129,\\ 14130 \end{array}$	14119,14131	14120,14121,14122, 14124,14125,14126	14123
2005.10.11	14221,14222,14223		$\begin{array}{c} 14224,\!14225,\!14226,\\ 14227\end{array}$	14228
2005.11.17	14380,14382,14387		$\begin{array}{c} 14381, 14383, 14384, \\ 14385, 14386, 14388, \\ 14389 \end{array}$	
2005.12.12	$\begin{array}{c} 14397,\!14399,\!14400,\\ 14401 \end{array}$	14398,14402		
2006.01.09	14597, 14598, 14599	14600	14601,14602,14603	14604
2006.06.05	$\begin{array}{c} 16478, 16479, 16480, \\ 16481 \end{array}$	16477	16473,16474,16475	16476
2006.06.07	$16497, 16498, 16499, \\16500$	16505	16501,16502,16503	16504
2006.06.08	16509, 16510			
????.??.??	$\overline{16677,}16678,16679$	16680, 16681	$1\overline{6682}, 1\overline{6683}, 1\overline{6684}$	
2006.07.29	17042	17043	17039,17041	17040
2006.07.30	17047	17048	$17044,\!17045$	17046
2006.07.31	17049, 17051, 17052,	17050	$17054,\!17055$	17056
2006.08.06	$\begin{array}{c} 17057, 17058, 170\overline{60}, \\ 17064, 17065, 17067, \\ 17068, 17069, 17070 \end{array}$	17059,17066,17071	$17061,17062,170\overline{72},\\17073$	17063,17074
2006.09.15	$17392, 17\overline{398}$	$17391,\!17\overline{397}$	$17394,\!17\overline{396}$	$17393,\!173\overline{95}$
2006.09.16	$\frac{17436,17437,17438}{17448,17475,17476}$	$\frac{17439,17447,17474}{17477}$	17434,17478	17435,17449,17479
2006.09.17	$\begin{array}{c} 17558,\!17559,\!17565,\\ 17566\end{array}$	17557,17564	17561,17563	17560,17562
2006.10.16	17754, 17755, 17756	$177\overline{53},\!17757$		

7.2 AG Peg

Data	Numer widma	Numer widma	Standard	Numer widma
obserwacji		porównania		porównania standardu
2003.09.06	8493,8494,8500	8495,8501	zet Peg-8496,	
			8497,8498,8499	
2004.01.05	10373,10374		15 Dra–10375	10378
			10376, 10377	

7.3. ZZ CMI

7.3 ZZ CMi

Data	Numer widma	Numer widma	Standard	Numer widma
obserwacji		porównania		porównania standardu
2000.09.11	159,160			
2001.02.22	872,873	874	$\gamma Gem - 875,$	878
			876,877	
2001.02.27	934, 935, 936,	938		
	973			
2002.02.04	1989,1990	1991		
2002.04.22	2743,2744	2745,2746	$\eta Hya - 2747,$	$2749,\!2753$
			2748, 2750, 2751,	
			2752	
2003.02.23	5484,5485,5491	5486,5492	$\beta CMi - 5487,$	$5490,\!5497$
			5488, 5489,	
			$\eta Hya - 5493,$	
			$5494,\!5495,\!5496$	
2003.09.21	8730			
2004.03.15	10868, 10869	10870		
2004.03.31	11965, 11966, 11967	11968	$\beta CMi - 11969,$	11972
			11970, 11971	
2004.04.11	12019,12020	12021	HD58383–12022,	12024
			12023	
2005.02.08	12626,12627	12628		
2005.09.21	14106,1407,14108	14109		
2006.01.10	14624,14625	14626		
2006.01.11	14642	14643		

7.4 o Ceti

Data	Numer widma	Numer widma	Standard	Numer widma
obserwacji		porównania		porównania standardu
2000.09.11	$152,\!153,\!154$	155		
2001.09.13	1670, 1671, 1672,	1674, 1675, 1681	$\delta Ceti - 1676,$	
	1673, 1679, 1680		1677, 1678	
2001.09.25	1823, 1824, 1825,	1826,1836	HR718–1828,	1831
	$1827,\!1834,\!1834$		1829, 1830	
2003.09.05	8470,8471,8472	8473	HR779–8474,	8478
			$8475,\!8476,\!8477$	
2003.11.28	10085, 10090	10086,10091	$\delta Ceti - 10087,$	10089
			10088, 10092	
2003.12.15	10144, 10149, 10150	10145,10151	10146, 10147, 10152,	10148, 10154
			10153	
2004.01.15	10422	10423	$10424,\!10425$	
2004.02.19	10664, 10666, 10667	10665	$\gamma Ceti - 10669,$	10672
			10670, 10671	
2005.02.05	12547, 12548, 12549	12550	12551, 12552, 12553,	12556
			12554, 12555	
2005.02.08	12602, 12603, 12604,	12606	12607, 12608, 12609,	12611
	12605		12610	
2005.08.18	13890, 13891, 13892	13893	$\delta Ceti - 13894,$	13898
			$13895,\!13896,\!13897$	
2005.09.18	14064, 14065, 14066,	14068	$14069,\!14070$	14071
	14067			
2006.01.09	14565, 14566, 14567	14568	14569, 14570, 14571	
2006.01.10	$14605,\!14606$	14607	14608, 14609	14610

7.5 AX Per

Data	Numer widma	Numer widma	Standard	Numer widma
obserwacji		porównania		porównania standardu
2002.04.03	$2528,\!2529,\!2530$	$2531,\!2532$	HD217086-2533	2534
2002.09.02	4021,4022,4023,	4025	$\theta Cas - 4026,$	4029
	4024		4027,4028	
2003.03.12	6009, 6010, 6011,	6012		
	$6028,\!6029$			
2003.09.05	8479,8480	8481	HD590-8482,	8485
			$8483,\!8484$	
2003.09.17	8684, 8685, 8686	8687	HD217086-8688,	8691
			8689, 8690	
2003.10.31	9776, 9777, 9778,	9779,9780,9791,	9781, 9782, 9783,	9787,9788
	$9789,\!9790$	9792	$9784,\!9785,\!9786$	
2003.11.03	9846, 9847	9848		
2003.12.16	10155, 10156, 10162	10157	HD590–10158,	10161
			10159, 10160	
2003.12.19	10227,10228,10229,	10230, 10232	10233, 10234, 10235,	
	10231		10236	
2004.01.05	$10365,\!10366,\!10367$	10368	10369, 10370, 10371	10385
2004.01.08	10379, 10380, 10381	10382	$10383,\!10384$	10385
2004.01.15	10420	10421		
2004.02.19	10673, 10674	10675		
2004.04.19	12996, 12997, 12998	12999	4 Per-13000,	13003
			$13001,\!13002$	
2005.08.01	$13853,\!13854$	13855		
2005.08.16	13865	13866		
2005.08.17	13867, 13868, 13869,	13871	13872,13873,13874	13875
	13870			
2005.08.19	13924, 13925, 13926,	13928	$13929,\!13930$	13931
	13927			
2005.08.20	13948, 13949, 13950	13951	13952, 13953, 13954	13955
2005.10.19	14360, 14361, 14362,	14365	HD1056–14366,	14370
	$14363,\!14364$		$14367,\!14368,\!14369$	
2006.01.09	14574, 14575, 14576	14572, 14573	4 Per-14577,	14580
			$14578,\!14579$	

Data	Numer widma	Numer widma	Standard	Numer widma
obserwacji		porównania		porównania standardu
2000.12.01	774,775,776			
2003.02.22	5429, 5430, 5431,	5432,5438	HD71155–5433,	5436,5442
	5437		$5434,\!5435,\!5439$	
			$5440,\!5441$	
2003.04.05	6674, 6676, 6677,	$6675,\!6679$	6680,6681,6682	6683
	6678			
2003.12.16	10165, 10166	10167	10168, 10169	10170
2003.12.19	10337	10338		
2004.01.05	$10358,\!10359,\!10360$	10361	10354, 10355, 10356,	10357,10364
			$10362,\!10363$	
2004.03.05	$10707,\!10708,\!10709$	10710	HR2845–10711,	10714
			$10712,\!10713$	
2004.04.02	$12012,\!12013,\!12014$	12015	12016, 12017	12018
2005.09.21	14110,14111,14112,	14115		
	$14113,\!14114$			
2005.10.11	$14241,\!14242$	14234		
2005.10.23	14371, 14372, 14373,	14375	14376, 14377, 14378	14379
	14374			
2006.01.09	14581, 14582, 14583	14584	HD551185–14586,	14585
			$14587,\!14588$	

7.6 BX Mon

7.7. CH CYG

7.7 CH Cyg

Data	Numer widma	Numer widma	Standard	Numer widma
obserwacji		porównania		porównania standardu
2000.08.01	007,008,009,	011,012,013,	69 Cyg–020,	023
	010	014	$021,\!022$	
2000.09.06	032, 033, 034,	031,036		
	035			
2000.09.21	208,209	210	HD166205-212,213	214
2000.09.23	249,250,266,	251,269	HD192281–253,	$252,\!273$
	267		$254,\!271,\!272$	
2000.09.25	$315,\!316$	317		
2001.02.24	898,899,900,			
	$901,\!902$			
2001.02.27	945, 946, 947,	949		
	948			
2001.04.10	1028, 1029, 1030,	1031	$\iota Cyg - 1033,$	$1036,\!1038$
	$1032,\!1040$		1034, 1035, 1037,	
			1039	
2001.04.19	1067	1068		
2001.04.25	1089, 1090, 1095,		HD212710–1097,	1100
	1096		1098,1099	
2001.05.02	1146,1147,1148	1149	$\iota Cyg - 1150,$	1153
			1151,1152	
2001.05.12	1287, 1288, 1289,	1286	$1292,\!1293,\!1294$	1291
	1290			
2001.05.21	1302, 1303, 1306,	1301, 1304, 1305,	$1311,\!1312$	1310
	1307,1308	1309		
2001.05.23	1333,1334,1335		1339,1340	1341
2001.10.20	1549, 1550, 1551,	1548		
	1552,1553			
2001.10.23	1564, 1565, 1566,	1568	1569, 1570, 1571	1572
	1567			
2001.11.13	1682,1683,1684	1685	1686,1687,1688	1689
2002.04.11	2657,2658	2659	TTD / 00000 / 0 / / 0	
2002.07.16	3405, 3406, 3407,	3404,3409	HD192281–3410,	3412(FeAr)
	3408	0.10.0	3411	
2002.07.23	3423,3424,3425	3426	<i>a</i> 1000	1100
2002.09.08	4096,4097	4098	$\iota Cyg - 4099,$	4102
2002 11 05	1500 1501	1500 1505	4100,4101	
2002.11.05	4532,4534	4533,4535		
2003.10.09	9026,9027,		9029,9030,	
	9028	0.0.10	9031	0070
2003.10.10	9045,9046,9047,	9049	$\iota Cyg - 9050,$	9052
	9048	0000	9051,9053,9054	00000
2003.10.12	9090,9091	9092	9093,9094,9095	9096
2003.10.28	9662,9663,9664	9665	HD182691–9666,	9669
			9667,9668	
2003.10.31	$9730,\!9731$	9732		

ROZDZIAŁ 7. SUPLEMENT 2

Data	Numer widma	Numer widma	Standard	Numer widma
obserwacji		porównania		porównania standardu
2003.11.01	9793	9794		
2003.11.25	$10072,\!10073$	10074	10075, 10076, 1077,	10079
			10078	
2005.02.06	12596, 12597	12598	$\iota Cyg - 12599,$	
			12600	
2005.03.30	12934, 12935	12936		
2005.04.19	13004, 13005, 13006	13007	13008, 13009, 13010,	13011
			$13012,\!13013$	
2005.04.26	$13181,\!13182$	13183		
2005.05.24	13403,13404	13405	$\theta Cyg - 13406,$	13409
			$13407,\!13408$	
2005.06.30	13653, 13654, 13655,	13656, 13666	$\iota Cyg - 13657,$	
	13665		13658, 13659, 13661,	
			$13662,\!13663$	
2005.07.15	$13667,\!13668,\!13669$	13670	$13671,\!13672,\!13673$	13674
2005.07.29	13750, 13751, 13752,	13753, 13762	13754, 13755, 13756,	$13757,\!13767$
	13760, 13761		$13763,\!13764$	
2005.07.30	13776, 13777, 13778			
2005.08.01	$13837,\!13838,\!13839$	13840	13841, 13842, 13843	13844
2005.08.16	13856, 13857, 13858	13859	13860, 13861, 13862,	13864
			13863	
2005.08.19	$13916,\!13917,\!13918$	13919	13920, 13921, 13922	13923
2005.11.19	14351, 14352, 14353,	14355	14356, 14357, 14358	14359
	14354			
$2\overline{0}05.12.17$	$144\overline{21,}14422,14430,$	$1\overline{4423}, 144\overline{29}$	14424, 14425, 14426,	14432
	$14431,\!14437$		14427, 14433, 14434,	
			14435	
2006.01.09	$\overline{14557,}14559$	14558, 14560		
2006.07.11	16789,16790,16791	16792		

7.8.	CI	CYG
	<u> </u>	010

7.8 CI Cyg

Data	Numer widma	Numer widma	Standard	Numer widma
obserwacji		porównania		porównania standardu
2000.09.24	291,292	293	HD192281-298,	
			299	
2001.10.24	1629, 1630, 1631	1632		
2002.07.23	3420,3421	3422		
2002.09.03	4046, 4047, 4052,	4048,4054,4059	HR7647–4049,	4051,4057
	$4053,\!4058$		4050, 4055, 4056,	
			4060	
2003.11.03	9803,9804,9805,	9807	HR7708–9808,	9812
	9806		9809,9810,9811	
2003.12.19	10341	10342		
2005.04.26	13173,13174,13175	13176	29 Cyg-13177,	13180
			13178, 13179	
2005.08.17	13876, 13877, 13878	13879	$\iota Cyg - 13880,$	13883
			$13881,\!13882$	
2005.08.19	13910, 13911, 13912,	13915		
	$13913,\!13914$			
2005.08.25	14010,14011,14012	14013		
2005.08.27	14028, 14029, 14030			
2005.09.18	14060, 14061, 14062	14063		
2005.10.11	14229,14230,14231	14232		
2005.12.17	14412,14413,14414,	14416	HR7708–14417,	1420
	14415		$14418,\!14419$	
2006.01.09	$14561,\!14562,\!14563$	14564		

7.9 EG And

Data	Numer widma	Numer widma	Standard	Numer widma
obserwacji		porównania		porównania standardu
2000.12.01	759,760,761	762	HD224687–764,	763
			765	
2002.07.25	3919,3920	3921	$\nu And - 3922$	3933
2002.09.02	4014,4015,4016	4017	HR269–4018,	4020
			4019	
2003.09.19	8701,8702,8703,	8705		
	8704			

7.10 MWC 560

Data	Numer widma	Numer widma	Standard	Numer widma
obserwacji		porównania		porównania standardu
2001.02.24	883,884,886	885		
2001.02.27	924, 925, 926,	929	$\eta Hya - 930,$	933
	$927,\!928$		$931,\!932$	
2001.10.23	1573, 1574, 1575,			
	$1576,\!1577$			
2001.10.24	1611, 1612, 1613,	1615		
		, ,	<u>'</u>	•
	1614			
2001.11.14	1711, 1712, 1713,	1714, 1725, 1726,	1717, 1718, 1719,	1721
	$1722,\!1723,\!1724$	$1727,\!1728,\!1729$	1720	
2001.11.16	1780, 1781, 1783,	1785	1777, 1778, 1789,	1779,1792
	1784		1790, 1791	
2001.11.25	1841, 1842, 1843,	1844, 1851, 1857	30 Mon–1846,	1845
	1852, 1853, 1854,		1847	
	1855, 1856			
2002.02.04	1977, 1978, 1983,	1979,1985	$\eta Hya - 1980,$	1982
	1984		1981	
2003.10.28	9715,9716,9717	9718,9719	π^2 Ori-9720,	9724,9725
			$9721,\!9722,\!9723$	
2005.01.31	12494,12495,12497	12496,12498		
2005.02.05	12509,12510,12511	12512	HD93521–12513,	12516
			12514, 12515	
2005.02.06	12567, 12568, 12569,	12571,12573	HD71155–12574,	12579
	12570, 12572		12575, 12576, 12577,	
			12578	
2005.03.20	12745, 12746, 12747,	12749		
	12748			
2005.03.30	12878, 12879, 12880	12881	HD62832–12882,	12885
			12883, 12884	
2005.03.31	12937,12938,12939	12940	12941,12942,12943	12579
2005.04.18	12979	12980		
2005.04.19	12984	12985		
2005.04.20	$13025,\!13026$	13027	HD55484–13029,	13032
			13030,13031	
2006.01.10	14616,14617,14618	14619	HD71155–14620,	14623
			$14621,\!14622$	

Data	Numer widma	Numer widma	Standard	Numer widma
obserwacji		porównania		porównania standardu
2000.09.11	156, 157	158	$\gamma Gem - 161,$	163
			162	
2001.02.24	890,891,892,	894	895,896,897	
	893			
2001.02.27	939,940,941,	944		
	942			
2001.05.02	1126, 1127, 1128,			
	1129			
2003.02.22	5443,5444	5445	64 Gem–5446,	5449
			$5447,\!5448$	
2003.04.05	6684,6685,6686	6687	6688,6689,6690	6691
2003.11.22	10049,10050,10051	10052		
2004.04.11	12025,12026	12027	HR2857–12028,	12030
			12029	
2005.04.18	12981,12982	12983		
2005.04.26	13163	13164		

7.11 NQ Gem
7.12 PU Vul

Data	Numer widma	Numer widma	Standard	Numer widma
obserwacji		porównania		porównania standardu
2001.10.24	1588, 1589, 1590	1591		
2002.07.23	3416,3417,3418	3419		
2002.07.26	3446, 3447, 3452,	3445,3448,3454	58 Aql–3449,	$3451,\!3457$
	3453		3450,	
			HD192281-3455,	
			3456	
2002.08.19	3752, 3753, 3754,	3756	29 Vul–3757,	3760
	3755		$3758,\!3759$	
2003.09.06	8502,8503	8504		
2006.08.11	16783, 16784, 16785	16786	17 Vul–16780,	16783
			16781, 16782	

7.13 R Aqr

Data	Numer widma	Numer widma	Standard	Numer widma
obserwacji		porównania		porównania standardu
2002.08.28	3961, 33962, 3963,	3965	ω^2 Aqr–3966,	
	3964		$3967,\!3968$	

7.14. RS OPH

7.14 RS Oph

Data	Numer widma	Numer widma	Standard	Numer widma
obserwacji		porównania		porównania standardu
2002.04.21	$2723,\!2724$	2725		
2002.04.22	2780,2781,2782	2783,2784	58 Aql–2785,	2787
			2786	
2002.06.24	3069, 3070, 3072,	3071,3074		
	3073			
2002.07.26	3435, 3437, 3438,	3436,3441	HD192281-3442,	3444
	$3439,\!3440$		3443	
2002.07.27	3466, 3467, 3468,	3469,3473,3478		
	3470, 3471, 3471,			
	3472, 3474, 3475,			
	$3476,\!3477$			
2002.07.28	3479,3480,3481	3482	HD177765–3483,	3486
			$3484,\!3485$	
2005.07.29	13742,13743,13744	13745	$\gamma Oph - 13746,$	13749
			$13747,\!13748$	
2005.07.30	13768, 13769, 13770	13771	13772,13773,13774	13775
2006.03.21	14731	14732		
2006.07.02	16696, 16697, 16698,	16699, 16707	$\tau Oph - 16701,$	16700.16708
	16704, 16705, 16706		16702, 16703, 16709,	
			16710, 16711	
2006.09.15	$173\overline{44,17345,17347}$	17346,17348		
2006.09.16	$174\overline{40,17441,17444}$	17442,17443	17445	17446
2006.09.17	$17549,\!17550$	17548,17551	17546,17547	17545

Data	Numer widma	Numer widma	Standard	Numer widma
obserwacji		porównania		porównania standardu
2001.05.02	1130, 1131, 1132,	1134	$\gamma CrB - 1135,$	1138
	1133		$1136,\!1137$	
2002.02.14	2096,2097,2101	2098,2102	BD +26 2606-2099	2100
2002.03.20	2491,2492,2493	2494	108 Vir–2495,	2498
			$2496,\!2497$	
2002.04.21	2714,2715,2716	2717		
2003.02.23	$5537,\!5538,\!5539$	5540		
2003.04.23	6833, 6834, 6835,	6837	HR5849–6838,	6841
	6836		$6839,\!6840$	
2004.03.04	10694,10695	10696		
2004.04.02	12037,12038	12039	108 Vir–12040,	12042
			12041	
2004.04.28	12244,12245	12246	12247,12248	12249
2004.04.30	12293,12294,12295	12296	12297,12298	12299
2004.05.14	12411,12412,12413,	12414,12416		
	12415			
2005.02.06	12591,12592	12593		
2005.03.31	12969,12970,12971	12972		
2005.04.19	13017,13018	13019		
2005.04.20	13049,13050,13051	13052	$\delta CrB - 13053,$	13056
			$13054,\!13055$	
2005.08.20	13932,13933,13934	13935	$\iota \overline{Ser - 13936},$	13939
			$13937,\!13938$	

7.15 T CrB

7.16. TX CVN

7.16 TX CVn

Data	Numer widma	Numer widma	Standard	Numer widma
obserwacji		porównania		porównania standardu
2000.12.01	777,778,779	780	$\beta Leo - 782,$	781
			783	
2001.05.03	1160, 1161, 1162,	1159,1169	HD108382–1164,	1166,1172
	$1163,\!1167,\!1167$		1165,	
			$\delta UMa - 1170,$	
			1171	
2002.03.20	2484,2485,2486	2487	$\eta UMa - 2488,$	
			2489,2490	
2002.04.21	2693, 2694, 2695,	2697	2698, 2699, 2700	2701
	2696			
2003.04.02	6652, 6653, 6654,	6656	$6657,\!6658,\!6659$	6660
	6655			
2004.03.05	10715, 10716	10717	HD93521–10718,	10721
			10719, 10720	
2004.03.31	11973,11974,11975		11976	
2004.04.01	11994,11995	11996	$11997,\!11998$	11999
2004.04.02	12031,12032	12033	$12034,\!12035$	12036
2004.04.15	12100,12101,12102	12103	12104, 12105, 12106	12107
2004.04.28	12238,12239	12240	$12241,\!12242$	12243
2004.04.29	12256,12257	12258	12259,12260,12261	12262
2004.04.30	12273,12274,12275	12276	12277, 12278	12279
2005.02.06	12582,12583,12584	12585	HD113797–12586,	12590
			12587, 12588, 12589	
2005.03.19	12736,12737,12738	12739	12740,12741,12742	12743
2005.04.19	13014,13015	13016		
2005.04.20	13041,13042,13043	13044	HD108225–13045,	13048
			13046, 13047	
2006.01.09	14589,14590,14591	14592	HR4943–14593,	14596
			$14594,\!14595$	

7.17 V627 Cas

Data	Numer widma	Numer widma	Standard	Numer widma
obserwacji		porównania		porównania standardu
2000.09.22	234, 235, 238,	236,237	HD217086-240,	243,248
	239		241,246,247	
2003.09.06	8505,8506,8507,	8509		
	8508			
2005.10.11	14238,14239,14240			

7.18 V1016 Cyg

Data	Numer widma	Numer widma	Standard	Numer widma
obserwacji		porównania		porównania standardu
2000.09.24	$295,\!296$	294	HD192281-298,299	297
2001.02.27	$955,\!956$			

7.19 YY Her

Data	Numer widma	Numer widma	Standard	Numer widma
obserwacji		porównania		porównania standardu
2005.05.29	13612	13613		
2005.08.18	13888(zły!)			
2005.08.25	13991, 13992, 13993,	13996	101 Her-13997,	14000
	$13994,\!13995$		13998, 13999	

7.20 V934 Her

Data	Numer widma	Numer widma	Standard	Numer widma
obserwacji		porównania		porównania standardu
2000.09.21	201,202	203		
2000.09.22	217, 218, 228,	219,230		
	229			
2005.02.06	12594,12595			
2005.03.19	12744			
2005.03.20	12757,12758,12759	12760		
2005.03.22	12862,12863,12864	12865	$\epsilon Her - 12866,$	12870
			12867, 12868, 12869	
2005.03.30	12926,12927,12928	12929	12930,12931,12932	12933
2005.04.26	13165,13166,13167	13168	70 Her–13169,	13172
			13170, 13171	

Data	Numer widma	Numer widma	Standard	Numer widma
obserwacji		porównania		porównania standardu
2000.09.06	$050,\!051,\!052,$	$049,\!053,\!074$	HD217086–055,	057
	$075,\!076$		$056,\!077,\!078$	
			079	
2000.09.07	096,097,098,	099	101,102,113,	103,115
	100, 111, 112		114	
2000.09.11	139,140,141,	150	144,145	143,146
	142, 148, 149,			
	151			
2000.09.14	177,178	179	181	180
2000.09.20	184, 185, 186,	187	189,190	188,191
	$193,\!194,\!195$			
2000.09.23	255, 256, 257,	$258,\!276$	260, 261, 278,	259,277
	$273,\!274,\!275$		279	
2000.09.24	300,301	302	304,305	303
2000.10.20	581, 582, 583,	$589,\!600,\!607$	586, 587, 592,	585, 588, 594,
	584, 590, 591,		593, 597, 598	599
	$601,\!602,\!603,$			
	$604,\!605,\!606$			
2000.12.01	751,752,753	754	756,757	755
2001.02.27	915, 916, 917,	919	920,921,922	923
	918			
2001.10.23	1559, 1560, 1561,	1563		
	1562	1000		
2001.10.24	1592,1593,1598,	1600	$1596,\!1597$	
0001 11 10	1599	100	10.1.1.1000	
2001.11.13	1694,1695,1696,	1697	18 And–1698,	1700,1706
	1701,1702		1699,1703,1704,	
2002.00.24	2004 2005	2000	1705	2000
2002.08.24	3884,3885	3886	$\lambda And - 3887,$	3889
2002.02.25	2004 2005	2006	<u> 3888</u> 2027 2029	2020
2002.08.25	3924,3920	3920	3927,3928	3929
2002.10.19	4413,4415,4410,	4414,4417,4434,	18 And-4418,	4420,4437,4443
	4452,4455,4458,	4440	4419,4435,4430,	
2002 10 24	4439	4470 4400	4441,4442	
2002.10.24	4470,4477,4479	4478,4480		
2002.10.27	4020	4520	4549 4549	4544
2002.11.00	4007,4000,4040	4009,4041	4042,4040	4344 8700
2003.09.19	8092,8093,8094	0095	8699 8699	8700
2006.01.10	14611, 14612, 14613,	14615		
	14614			
2006.01.11	14626,14627,14628	14629	$\begin{array}{c} \mathrm{HR8967-14631,} \\ \mathrm{14632,14633} \end{array}$	14630
2006.08.11	16793, 16794, 16795	16796		
2006.09.15	$17\overline{361,}17\overline{367,}17\overline{368},$	$17\overline{360,}17\overline{366,}17\overline{369,}$	17362,17365	$17363,\!17364$
	17385, 17387, 17389,	17384, 17386, 17388,		
	17390,17400	17399		

7.21. Z AND

Data	Numer widma	Numer widma	Standard	Numer widma
obserwacji		porównania		porównania standardu
2006.09.16	17457, 17458, 17469,	17456, 17459, 17468,	$17461,\!17473,\!17484$	17460, 17472, 17483
	$17470,\!17481,\!17482$	17471,17480		
2006.09.17	17584, 17585, 17603,	17583, 17602, 17609	18 And–17587,	17586, 17605, 17607
	17604, 17610, 17611,		17606, 17608	
	17612			
2006.10.11	17664, 17665, 17666,	17663, 17667	17670	17669
	17668			
2006.10.16	17744, 17745, 17746,	17747, 17773, 17777,	17749, 17750, 17751,	17748, 17752, 17781,
	17774, 17775, 17776,	17794, 17798	17778, 17779, 17780,	$17799,\!17803$
	17795, 17796, 17797		$17800,\!17801,\!17802$	
2006.11.10	18044,18047	18041, 18042, 18043,		
		18044, 18045, 18046,		
		$18048,\!18049$		

Bibliografia

- Aller, L. H. (1954). Astrophysics. Nuclear transformations, stellar interiors, and nebulae. New York: Ronald Press, 1954.
- Belczynski, K. and Mikolajewska, J. (1998). New binary parameters for the symbiotic recurrent nova T Coronae Borealis. , 296:77–84.
- Belczyński, K., Mikołajewska, J., Munari, U., Ivison, R. J., and Friedjung, M. (2000). A catalogue of symbiotic stars. A&A, 146:407–435.
- Belyakina, T. S. (1970). Light variations of AG Peg between 1962 and 1967. Astrophysics, 6:22–29.
- Belyakina, T. S. (1979). Observations of CI Cyg in 1977-78. Informational Bulletin on Variable Stars, 1602:1-+.
- Belyakina, T. S. (1984). The Eclipse of the Symbiotic Eclipsing Binary System CI Cygni in 1982. Informational Bulletin on Variable Stars, 2485:1–+.
- Bianchini, A. and Middleditch, J. (1976). On the Decrease of the Ultraviolet Flickering of T Coronae Borealis. Informational Bulletin on Variable Stars, 1151:1–+.
- Bidelman, W. P. (1954). Catalogue and Bibliography of Emission-Line Stars of Types Later than B., 1:175–+.
- Blair, W. P., Feibelman, W. A., Michalitsianos, A. G., and Stencel, R. E. (1983). Spectrophotometric observations of symbiotic stars and related objects., 53:573–590.
- Bopp, B. W. (1984). ZZ Canis Minoris as a symbiotic star., 96:894–896.
- Boyarchuk, A. A. (1975). Principal requirement to modern astronomical spectrographs. Novaya tekhn. v astron., Vyp. (No.) 5, p. 5 7, 5:5-7.

- Bruch, A. (1980). UBV-Observations of Some Cataclysmic Variables. Informational Bulletin on Variable Stars, 1805:1–+.
- Chkhikvadze, Y. N. (1970). Spectral observations of TX CVn in 1966 1970. Astronomicheskij Tsirkulyar, 595:1–3.
- Chochol, D., Pribulla, T., and Tamura, S. (1998). Pulsating AGB star in the symbiotic nova PU Vulpeculae. Informational Bulletin on Variable Stars, 4571:1–+.
- Cowley, C. R. (1956). A Star with an Unusual Variable Spectrum. , 68:537-+.
- Dobrzycka, D., Kenyon, S. J., and Milone, A. A. E. (1996a). Rapid Light Variations in Symbiotic Binary Stars. , 111:414-+.
- Dobrzycka, D., Kenyon, S. J., Proga, D., Mikolajewska, J., and Wade, R. A. (1996b). The Hot Component of RS Ophiuchi. , 111:2090–+.
- Dumm, T., Muerset, U., Nussbaumer, H., Schild, H., Schmid, H. M., Schmutz,
 W., and Shore, S. N. (1998). High resolution spectroscopy of symbiotic stars.
 IV. BX Monocerotis: orbital and stellar parameters. , 336:637–647.
- Fekel, F. C., Hinkle, K. H., Joyce, R. R., and Skrutskie, M. F. (2000). Infrared Spectroscopy of Symbiotic Stars. II. Orbits for Five S-Type Systems with Two-Year Periods., 120:3255–3264.
- Fernandez-Castro, T., Cassatella, A., Gimenez, A., and Viotti, R. (1988). IUE observations of Z Andromedae - Spectral variations during quiescence and a physical model., 324:1016–1025.
- Formiggini, L. and Leibowitz, E. M. (1994). Three periodicities in a 98-year light curve of the symbiotic star Z Andromedae. , 292:534–542.
- Frackowiak, S. M., Mikolajewski, M., and Tomov, T. (2002). Possible pulsations of the M giant in MWC560. ArXiv Astrophysics e-prints.
- Garcia, M., Baliunas, S. L., Elvis, M., Fabbiano, G., Patterson, J., Schwartz, D., Doxsey, R., Koenigsberger, G., Swank, J., and Watson, M. G. (1983).
 Identification and properties of the M giant/X-ray system HD 154791 = 2A 1704+241., 267:291–300.
- Glushneva, I. N., Doroshenko, V. T., Fetisova, T. S., Khruzina, T. S., Kolotilov, E. A., Mossakovskaya, L. V., Ovchinnikov, S. L., and Voloshina, I. B.

(1998). Sternberg Spectrophotometric Catalog (Glushneva+ 1998). VizieR Online Data Catalog, 3208:0-+.

- Glushneva, I. N., Kharitonov, A. V., Kniazeva, L. N., and Shenavrin, V. I. (1992). Secondary spectrophotometric standards. , 92:1–29.
- Greenstein, N. K. (1937). Light Curves for Three Variables with Peculiar Spectra. *Harvard College Observatory Bulletin*, 906:3–6.
- Hachisu, I. and Kato, M. (2000). A Theoretical Light-Curve Model for the 1985 Outburst of RS Ophiuchi. , 536:L93–L96.
- Herbig, G. H. (1950). The Spectra of Five Irregular Variable Stars., 62:211-+.
- Hogg, F. S. (1932). On the Presence of Titanium Oxide Bands in the Spectrum of Z Andromedae. , 44:328–+.
- Ianna, P. A. (1964). A Flare of T Coronae Borealis., 139:780-+.
- Iijima, T. (1984). Highly Excited Emission Lines in BX Mon and ZZ CMi. Informational Bulletin on Variable Stars, 2491:1–+.
- Iijima, T. (1985). BX MON as a long-period eclipsing binary system. , 153:35–43.
- Johnson, H. R., Eaton, J. A., Querci, F. R., Querci, M., and Baumert, J. H. (1988). The unusual carbon star HD 59643 Alternative models. , 204:149–158.
- Keenan, P. C., Garrison, R. F., and Deutsch, A. J. (1974). Revised Catalog of Spectra of Mira Variables of Types ME and Se. , 28:271–+.
- Keenan, P. C. and McNeil, R. C. (1989). The Perkins catalog of revised MK types for the cooler stars. , 71:245–266.
- Keenan, P. C. and Morgan, W. W. (1941). The Classification of the Red Carbon Stars. , 94:501–+.
- Kenny, H. T., Taylor, A. R., and Seaquist, E. R. (1991). AG Pegasi A multishell radio source. , 366:549–559.
- Kenyon, S. J. (1982). The orbital period of the symbiotic star AX Persei. , 94:165-168.

- Kenyon, S. J. (1986). The symbiotic stars. Cambridge and New York, Cambridge University Press, 1986, 295 p.
- Kenyon, S. J. and Fernandez-Castro, T. (1987). The cool components of symbiotic stars. I - Optical spectral types. , 93:938–949.
- Kenyon, S. J. and Gallagher, J. S. (1983). Infrared spectroscopy of symbiotic stars and the nature of their cool components. , 88:666–673.
- Kenyon, S. J. and Garcia, M. R. (1986). Spectroscopic orbits for symbiotic stars. I - The recurrent nova T Coronae Borealis. , 91:125–131.
- Kenyon, S. J. and Garcia, M. R. (1989). Spectroscopic orbits for symbiotic stars. II - TX Canum Venaticorum. , 97:194–201.
- Kenyon, S. J., Mikolajewska, J., Mikolajewski, M., Polidan, R. S., and Slovak, M. H. (1993). Evolution of the symbiotic binary system AG Pegasi - The slowest classical nova eruption ever recorded. , 106:1573–1598.
- Kenyon, S. J., Oliversen, N. A., Mikolajewska, J., Mikolajewski, M., Stencel, R. E., Garcia, M. R., and Anderson, C. M. (1991). On the nature of the symbiotic binary CI Cygni. , 101:637–654.
- Kenyon, S. J. and Webbink, R. F. (1984). The nature of symbiotic stars. , 279:252–283.
- Kraft, R. P. (1958). The Binary System Nova T Coronae Borealis. , 127:625-+.
- Lawrence, G. M., Ostriker, J. P., and Hesser, J. E. (1967). Ultrashort-Period Stellar Oscillations. I. Results from White Dwarfs, Old Novae, Central Stars of Planetary Nebulae, 3c 273, and Scorpius XR-1., 148:L161+.
- Majcher, A. (2004). Wielobarwna fotometria gwiazd zmiennych uzyskana fotometrem diafragmowym w Obserwatorium W Piwnicach w latach 1991-2004.
- Mammano, A. and Taffara, S. (1978). Evolution of TX CVn from cataclysmic to stationary P Cyg stage. , 34:211–228.
- Mattei, J. A., Hanson, G., Poyner, G., Modic, R., Schmeer, P., and Bortle, J. (1997). Z Andromedae. , 6679:3–+.
- Merrill, P. W. (1944). Spectroscopic Observations of AX Persei, RW Hydrae, CI Cygni, and Z Andromedae. , 99:15–+.

- Merrill, P. W. (1948). The Spectrum of Z Andromedae in 1946 and 1947. , 107:317–+.
- Merrill, P. W. and Burwell, C. G. (1950). Additional Stars whose Spectra have a Bright H α Line. , 112:72–+.
- Merrill, P. W., Humason, M. L., and Burwell, C. G. (1932). Discovery and Observations of Stars of Class Be: Second Paper., 76:156–+.
- Michalitsianos, A. G., Feibelman, W. A., Hobbs, R. W., and Kafatos, M. (1982). Ultraviolet observations of four symbiotic stars. , 253:735–744.
- Mikolajewska, J. and Kenyon, S. J. (1992). On the nova-like eruptions of symbiotic binaries. , 256:177–185.
- Mikolajewska, J. and Kenyon, S. J. (1996). The Inscrutable Hot Component in the Symbiotic Binary Z Andromedae. , 112:1659–+.
- Mikolajewski, M., Tomov, T., and Kolev, D. (1997). Activity of T Coronae Borealis in 1996. Informational Bulletin on Variable Stars, 4428:1–+.
- Muerset, U., Jordan, S., and Walder, R. (1995). The ROSAT spectrum of the symbiotic nova AG Pegasi: evidence for colliding winds. , 297:L87+.
- Muerset, U., Nussbaumer, H., Schmid, H. M., and Vogel, M. (1991a). Temperature and luminosity of hot components in symbiotic stars. , 248:458–474.
- Muerset, U., Nussbaumer, H., Schmid, H. M., and Vogel, M. (1991b). Temperature and luminosity of hot components in symbiotic stars. , 248:458–474.
- Mumford, III, G. S. (1956). A New Variable of the Z Andromedae Type. , 68:538–+.
- Munari, U., Rejkuba, M., Hazen, M., Mattei, J., Schweitzer, E., Luthardt, R., Shugarov, S., Yudin, B. F., Popova, A. A., Chugainov, P. V., Sostero, G., and Lepardo, A. (1997). The symbiotic star YY Herculis. I. Photometric history over 1890-1996., 323:113–120.
- Munari, U., Yudin, B. F., Taranova, O. G., Massone, G., Marang, F., Roberts, G., Winkler, H., and Whitelock, P. A. (1992). UBVRI-JHKL photometric catalogue of symbiotic stars. , 93:383–390.
- Munari, U. and Zwitter, T. (2002). A multi-epoch spectrophotometric atlas of symbiotic stars. , 383:188–196.

- Mürset, U. and Schmid, H. M. (1999). Spectral classification of the cool giants in symbiotic systems. , 137:473–493.
- Oskanian, Jr., A. V. (1983). Unusual Behaviour of the Recurrent Nova T CrB. Informational Bulletin on Variable Stars, 2349:1–+.
- Payne-Gaposchkin, C. (1946). The Light-Curves of Z Andromedae and AX Persei. , 104:362–+.
- Plaskett, H. H. (1923). A possible origin of the nebular lines (abstract). *Popular* Astronomy, 31:658–+.
- Plaskett, J. S. (1927). The orbit of the B-type spectroscopic binary. , 39:258–258.
- Querci, M., Querci, F., Johnson, H. R., and Baumert, J. H. (1986). A rapid planetary phase observed on the IUE spectral region of the carbon star, HD 59643. Advances in Space Research, 6:215–218.
- Richardson, E. H. and Brealey, G. A. (1973). A Small Off-Axis Spectrograph. , 67:165–+.
- Rosino, L. and Iijima, T. (1987). The 1985 Outburst of RS Ophiuchi. In Bode, M. F., editor, RS Ophiuchi (1985) and the Recurrent Nova Phenomenon, pages 27–+.
- Samus, N. N. and Durlevich, O. V. (2004). Combined General Catalogue of Variable Stars. *VizieR Online Data Catalog*, 2250:0–+.
- Sanford, R. F. (1947). The Spectrum of BD+9 deg 1633., 59: 136 - +.
- Schmid, H. M. and Schild, H. (1997). The polarimetric orbit of Z Andromedae. , 327:219–223.
- Seaquist, E. R., Taylor, A. R., and Button, S. (1984). A radio survey of symbiotic stars. , 284:202–210.
- Snijders, M. A. J. (1987). Multi-frequency observations of the 1985 outburst of RS Ophiuchi. , 130:243–254.
- Sokoloski, J. L. and Bildsten, L. (1999). Discovery of a Magnetic White Dwarf in the Symbiotic Binary Z Andromedae. , 517:919–924.

- Sokoloski, J. L., Eracleous, M., Steeghs, D., and Bildsten, L. (2001). Spectral Properties of the Flickering Optical Light in Symbiotic Recurrent Novae. In Bulletin of the American Astronomical Society, volume 33 of Bulletin of the American Astronomical Society, pages 803-+.
- Stanishev, V., Zamanov, R., Tomov, N., and Marziani, P. (2004). H α variability of the recurrent nova T Coronae Borealis. , 415:609–616.
- Swings, J. P. and Allen, D. A. (1972). Photometry of Symbiotic and VV Cephei Stars in the Near Infrared (With a Note on MWC 56)., 84:523–+.
- Taranova, O. G. and Yudin, B. F. (1982). Photometry of symbiotic stars in the UBVRJHKLMN system. III - AX Per, AG Dra, BF Cyg, V 443 Her, and YY HER., 59:92–98.
- Tomov, N. A., Tomova, M. T., and Raikova, D. V. (1998). The visual line spectrum of AG Pegasi in 1995. , 129:479–488.
- Tomov, T., Kolev, D., Zamanov, R., Georgiev, L., and Antov, A. (1990). MWC560 - A unique astrophysical object., 346:637–+.
- Zamanov, R., Bode, M. F., Stanishev, V., and Martí, J. (2004). Flickering variability of T Coronae Borealis., 350:1477–1484.
- Zamanov, R. and Tomov, T. (1992). UBV Observations of ZZ CMi. Informational Bulletin on Variable Stars, 3705:1-+.